首页 > 代码库 > bjfu1235 两圆公共面积

bjfu1235 两圆公共面积

给定两个圆,求其覆盖的面积,其实也就是求其公共面积(然后用两圆面积和减去此值即得最后结果)。

我一开始是用计算几何的方法做的,结果始终不过。代码如下:

/* * Author    : ben */#include <cstdio>#include <cstdlib>#include <cstring>#include <cmath>#include <ctime>#include <iostream>#include <algorithm>#include <queue>#include <set>#include <map>#include <stack>#include <string>#include <vector>#include <deque>#include <list>#include <functional>#include <numeric>#include <cctype>using namespace std;const double pi = acos(-1);typedef struct MyPoint {    double x, y;    MyPoint(double xx = 0, double yy = 0) {        x = xx;        y = yy;    }} MyPoint;inline double mydistance2(const MyPoint &p1, const MyPoint &p2) {    return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);}inline double mydistance(const MyPoint &p1, const MyPoint &p2) {    return sqrt(mydistance2(p1, p2));}MyPoint intersection(MyPoint u1, MyPoint u2, MyPoint v1, MyPoint v2) {    MyPoint ret = u1;    double t = ((u1.x - v1.x) * (v1.y - v2.y) - (u1.y - v1.y) * (v1.x - v2.x))            / ((u1.x - u2.x) * (v1.y - v2.y) - (u1.y - u2.y) * (v1.x - v2.x));    ret.x += (u2.x - u1.x) * t;    ret.y += (u2.y - u1.y) * t;    return ret;}void intersection_line_circle(MyPoint c, double r, MyPoint l1, MyPoint l2,        MyPoint& p1, MyPoint& p2) {    MyPoint p = c;    double t;    p.x += l1.y - l2.y;    p.y += l2.x - l1.x;    p = intersection(p, c, l1, l2);    t = sqrt(r * r - mydistance(p, c) * mydistance(p, c)) / mydistance(l1, l2);    p1.x = p.x + (l2.x - l1.x) * t;    p1.y = p.y + (l2.y - l1.y) * t;    p2.x = p.x - (l2.x - l1.x) * t;    p2.y = p.y - (l2.y - l1.y) * t;}void intersection_circle_circle(MyPoint c1, double r1, MyPoint c2, double r2,        MyPoint& p1, MyPoint& p2) {    MyPoint u, v;    double t;    t = (1 + (r1 * r1 - r2 * r2) / mydistance(c1, c2) / mydistance(c1, c2)) / 2;    u.x = c1.x + (c2.x - c1.x) * t;    u.y = c1.y + (c2.y - c1.y) * t;    v.x = u.x + c1.y - c2.y;    v.y = u.y - c1.x + c2.x;    intersection_line_circle(c1, r1, u, v, p1, p2);}int main() {    freopen("data.in", "r", stdin);//    freopen("data.out", "w", stdout);    int T;    double x, y, r1, r2;    scanf("%d", &T);    double ans;    while (T--) {        scanf("%lf%lf%lf", &x, &y, &r1);        MyPoint c1(x, y);        scanf("%lf%lf%lf", &x, &y, &r2);        MyPoint c2(x, y);        double dis2 = mydistance2(c1, c2);        double dis = sqrt(dis2);        if (dis >= r1 + r2) { //相离            ans = pi * r1 * r1 + pi * r2 * r2;        } else if (dis <= fabs(r1 - r2)) { //包含            double r = r1 > r2 ? r1 : r2;            ans = pi * r * r;        } else { //相交            MyPoint p1, p2;            intersection_circle_circle(c1, r1, c2, r2, p1, p2);            double d2 = mydistance(p1, p2) / 2;            double angle1 = asin(d2 / r1);            double angle2 = asin(d2 / r2);            double Sanjiao1 = sqrt(r1 * r1 - d2 * d2) * d2;            double Sanjiao2 = sqrt(r2 * r2 - d2 * d2) * d2;            double San1 = r1 * r1 * angle1;            double San2 = r2 * r2 * angle2;            ans = pi * r1 * r1 + pi * r2 * r2;            ans -= San1 + San2 - Sanjiao1 - Sanjiao2;        }        printf("%.6f\n", ans);    }    return 0;}

 

根据后来的调试,应该是对如下图b的情况处理不正确。

于是后来上网找了几个中学的解析几何公式,终于a了。

做法是联立两个圆的方程(相减),得到相交弦所在直线方程,然后用点到直接的距离公式得到h1和h2,接着算出θ1和θ2,然后就能求得三角形的面积和扇形的面积了。一开始我以为需要分类讨论上面图a和图b两种情况,后来发现,直接去掉求距离时的取绝对值运算就可以了,因为距离为负的时候,得到的夹角也是负的,这样求的三角形面积是负的,扇形也是原先的相补的那部分,具体的图我就不画了,很容易想明白的。

AC代码如下:

/* * Author    : ben */#include <cstdio>#include <cstdlib>#include <cstring>#include <cmath>#include <ctime>#include <iostream>#include <algorithm>#include <queue>#include <set>#include <map>#include <stack>#include <string>#include <vector>#include <deque>#include <list>#include <functional>#include <numeric>#include <cctype>using namespace std;const double pi = acos(-1);typedef struct MyPoint {    double x, y;    MyPoint(double xx = 0, double yy = 0) {        x = xx;        y = yy;    }} MyPoint;inline double mydistance2(const MyPoint &p1, const MyPoint &p2) {    return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);}int main() {//    freopen("data.in", "r", stdin);    int T;    scanf("%d", &T);    double ans, r1, r2;    MyPoint c1, c2;    while (T--) {        scanf("%lf%lf%lf", &c1.x, &c1.y, &r1);        scanf("%lf%lf%lf", &c2.x, &c2.y, &r2);        double dis2 = mydistance2(c1, c2);        double dis = sqrt(dis2);        if (dis >= r1 + r2) { //相离            ans = pi * r1 * r1 + pi * r2 * r2;        } else if (dis <= fabs(r1 - r2)) { //包含            double r = r1 > r2 ? r1 : r2;            ans = pi * r * r;        } else { //相交            //h1和h2可能为负            double h1 = (dis2 + r1 * r1 - r2 * r2) / dis / 2.0;            double h2 = dis - h1;            double angle1 = acos(h1 / r1);            double angle2 = acos(h2 / r2);            double Sanjiao = sqrt(r1 * r1 - h1 * h1) * dis;            double Sanxin1 = r1 * r1 * angle1;            double Sanxin2 = r2 * r2 * angle2;            ans = pi * r1 * r1 + pi * r2 * r2;            ans -= Sanxin1 + Sanxin2 - Sanjiao;        }        printf("%.6f\n", ans);    }    return 0;}

 

bjfu1235 两圆公共面积