首页 > 代码库 > mina架构分析

mina架构分析

使用的版本是2.0.9


IoService分析

AbstractIoAcceptor定义了所有的public接口,并定义了子类需要实现的bindInternal函数,AbstractPollingIoAcceptor<S extends AbstractIoSession, H>作为它的一个派生类,主要就是实现bindInternal函数,
AbstractPollingIoAcceptor<S extends AbstractIoSession, H>类定义了bindInternal的实现框架,NioSocketAcceptor使用selector实现了它需要的接口,比如select,wakeup,open等函数。
总体来说,bindInternal实现的功能就是开启一个新的线程,在这个线程中绑定监听的地址,并接受客户端请求。看如下两个函数:
protected final Set<SocketAddress> bindInternal(List<? extends SocketAddress> localAddresses) throws Exception {
        // Create a bind request as a Future operation. When the selector
        // have handled the registration, it will signal this future.
        AcceptorOperationFuture request = new AcceptorOperationFuture(localAddresses);//这个future是一个用于线程间异步通信结果的类,它可以不被中断的等待异步操作的结果

        // adds the Registration request to the queue for the Workers
        // to handle
        registerQueue.add(request);

        // creates the Acceptor instance and has the local
        // executor kick it off.
        startupAcceptor();//这里启动acceptor线程

        // As we just started the acceptor, we have to unblock the select()
        // in order to process the bind request we just have added to the
        // registerQueue.
        try {
            lock.acquire();//lock是一个semaphone,用于同步acceptor线程,保证该线程在成功创建并开始运行后,再执行后续的代码

            // Wait a bit to give a chance to the Acceptor thread to do the select()
            Thread.sleep(10);
            wakeup();//这是一个派生类需要实现的接口
        } finally {
            lock.release();
        }

        // Now, we wait until this request is completed.
        request.awaitUninterruptibly();//这里异步等待acceptor线程设置结果,并导致当前线程被唤醒

        if (request.getException() != null) {
            throw request.getException();
        }

        // Update the local addresses.
        // setLocalAddresses() shouldn‘t be called from the worker thread
        // because of deadlock.
        Set<SocketAddress> newLocalAddresses = new HashSet<SocketAddress>();

        for (H handle : boundHandles.values()) {
            newLocalAddresses.add(localAddress(handle));
        }

        return newLocalAddresses;
    }

    /**
     * This method is called by the doBind() and doUnbind()
     * methods.  If the acceptor is null, the acceptor object will
     * be created and kicked off by the executor.  If the acceptor
     * object is null, probably already created and this class
     * is now working, then nothing will happen and the method
     * will just return.
     */
    private void startupAcceptor() throws InterruptedException {
        // If the acceptor is not ready, clear the queues
        // TODO : they should already be clean : do we have to do that ?
        if (!selectable) {
            registerQueue.clear();
            cancelQueue.clear();
        }

        // start the acceptor if not already started
        Acceptor acceptor = acceptorRef.get();

        if (acceptor == null) {
            lock.acquire();
            acceptor = new Acceptor();//创建Acceptor实例

            if (acceptorRef.compareAndSet(null, acceptor)) {
                executeWorker(acceptor);//启动acceptor线程
            } else {
                lock.release();
            }
        }
    }
现在来看看Acceptor线程
private class Acceptor implements Runnable {
        public void run() {
            assert (acceptorRef.get() == this);

            int nHandles = 0;

            // Release the lock
            lock.release();//进程开始运行了,释放lock

            while (selectable) {
                try {
                    // Detect if we have some keys ready to be processed
                    // The select() will be woke up if some new connection
                    // have occurred, or if the selector has been explicitly
                    // woke up
                    int selected = select();//调用select接口,派生类需要实现之

                    // this actually sets the selector to OP_ACCEPT,
                    // and binds to the port on which this class will
                    // listen on
                    nHandles += registerHandles();//遍历registerQueue中的绑定请求,并调用open接口,实际上就是由派生类实现bind地址的功能。

                    // Now, if the number of registred handles is 0, we can
                    // quit the loop: we don‘t have any socket listening
                    // for incoming connection.
                    if (nHandles == 0) {
                        acceptorRef.set(null);

                        if (registerQueue.isEmpty() && cancelQueue.isEmpty()) {
                            assert (acceptorRef.get() != this);
                            break;
                        }

                        if (!acceptorRef.compareAndSet(null, this)) {
                            assert (acceptorRef.get() != this);
                            break;
                        }

                        assert (acceptorRef.get() == this);
                    }

                    if (selected > 0) {
                        // We have some connection request, let‘s process
                        // them here.
                        processHandles(selectedHandles());//调用accept函数接收用户请求,创建Session,并把session加入到processor中
                    }

                    // check to see if any cancellation request has been made.
                    nHandles -= unregisterHandles();
                } catch (ClosedSelectorException cse) {
                    // If the selector has been closed, we can exit the loop
                    ExceptionMonitor.getInstance().exceptionCaught(cse);
                    break;
                } catch (Exception e) {
                    ExceptionMonitor.getInstance().exceptionCaught(e);

                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e1) {
                        ExceptionMonitor.getInstance().exceptionCaught(e1);
                    }
                }
            }

            // Cleanup all the processors, and shutdown the acceptor.
            if (selectable && isDisposing()) {
                selectable = false;
                try {
                    if (createdProcessor) {
                        processor.dispose();
                    }
                } finally {
                    try {
                        synchronized (disposalLock) {
                            if (isDisposing()) {
                                destroy();
                            }
                        }
                    } catch (Exception e) {
                        ExceptionMonitor.getInstance().exceptionCaught(e);
                    } finally {
                        disposalFuture.setDone();
                    }
                }
            }
        }


参考:
比较ReentrantLock和synchronized和信号量Semaphore实现的同步性能
http://blog.csdn.net/arkblue/article/details/6138598

IoSession
先来看看和IoSession相关的类结构

AbstractIoSession实现了Session完成的主要功能,所谓Session其实是一个物理连接的逻辑抽象,所以在NioSession这一层,它与Nio的channel是相关的,Session需要通过这个底层连接实现它的逻辑功能。
Session的主要功能,包括,关闭连接,在连接上进行read,write、设置和读取Session级别的属性,进行流量控制等。为了深入理解Session,我们需要了解如下几个问题:
1.Session是在何时,由谁创建的?
在前文分析中,我们知道在Acceptor线程中,在接收用户请求,并创建Session,具体来说,这个Session是在NioSocketAcceptor.accept方法中创建的
@Override
    protected NioSession accept(IoProcessor<NioSession> processor, ServerSocketChannel handle) throws Exception {

        SelectionKey key = null;

        if (handle != null) {
            key = handle.keyFor(selector);
        }

        if ((key == null) || (!key.isValid()) || (!key.isAcceptable())) {
            return null;
        }

        // accept the connection from the client
        SocketChannel ch = handle.accept();

        if (ch == null) {
            return null;
        }

        return new NioSocketSession(this, processor, ch);
    }
而该函数又是在AbstractPollingIoAcceptor<S extends AbstractIoSession, H>.processHandles中调用的
     @SuppressWarnings("unchecked")
        private void processHandles(Iterator<H> handles) throws Exception {
            while (handles.hasNext()) {
                H handle = handles.next();
                handles.remove();

                // Associates a new created connection to a processor,
                // and get back a session
                S session = accept(processor, handle);

                if (session == null) {
                    continue;
                }

                initSession(session, null, null);

                // add the session to the SocketIoProcessor
                session.getProcessor().add(session);
            }
        }
我们看到在创建session之后,会调用initSession对session进行初始化,然后把它加入到Processor中。
2.Session是如何进行读写的?
Session创建之后是如何收到对端数据,如何提供发送数据的接口的呢?先来看写操作,我们看看AbstractIoSession.write方法
public WriteFuture write(Object message, SocketAddress remoteAddress) {
          。。。

        // Now, we can write the message. First, create a future
        WriteFuture writeFuture = new DefaultWriteFuture(this);
        WriteRequest writeRequest = new DefaultWriteRequest(message, writeFuture, remoteAddress);

        // Then, get the chain and inject the WriteRequest into it
        IoFilterChain filterChain = getFilterChain();
        filterChain.fireFilterWrite(writeRequest);

         。。。
        // Return the WriteFuture.
        return writeFuture;
    }
该方法中,要被write的message,被包装在WriteRequest中,并且返回的是一个writeFuture,这就是说,我们可以使用这个future不被中断的等待写操作完成。同时,该方法中调用了filterChain的fireFilterWrite函数,它的作用是遍历filterChain中的所有filter,触发他们的fireFilterWrite方法。AbstractIoSession.getFilterChain只是一个接口,需要在派生类中实现。在其派生类NioSession中,我们可以看到这个filterChain是DefaultIoFilterChain实例。它的fireFilterWrite方法实际上是,从tail到head遍历链表,既然是反向遍历,那么Head是最后一个被遍历到的filter,这个head是一个HeadFilter实例
    private class HeadFilter extends IoFilterAdapter {
        @SuppressWarnings("unchecked")
        @Override
        public void filterWrite(NextFilter nextFilter, IoSession session, WriteRequest writeRequest) throws Exception {

            AbstractIoSession s = (AbstractIoSession) session;

            // Maintain counters.
            if (writeRequest.getMessage() instanceof IoBuffer) {
                IoBuffer buffer = (IoBuffer) writeRequest.getMessage();
                // I/O processor implementation will call buffer.reset()
                // it after the write operation is finished, because
                // the buffer will be specified with messageSent event.
                buffer.mark();
                int remaining = buffer.remaining();

                if (remaining > 0) {
                    s.increaseScheduledWriteBytes(remaining);
                }
            } else {
                s.increaseScheduledWriteMessages();
            }

            WriteRequestQueue writeRequestQueue = s.getWriteRequestQueue();//获取session中的写请求队列

            if (!s.isWriteSuspended()) {
                if (writeRequestQueue.isEmpty(session)) {
                    // We can write directly the message
                    s.getProcessor().write(s, writeRequest);//使用processor写writeRequest,实际上还是把writeRequest写入到写请求队列中了
                } else {
                    s.getWriteRequestQueue().offer(s, writeRequest);
                    s.getProcessor().flush(s);
                }
            } else {
                s.getWriteRequestQueue().offer(s, writeRequest);//把writeRequest写入到写请求队列中
            }
        }

        @SuppressWarnings("unchecked")
        @Override
        public void filterClose(NextFilter nextFilter, IoSession session) throws Exception {
            ((AbstractIoSession) session).getProcessor().remove(session);
        }
    }
从这个类,我们可以清楚的看到我们请求写的writeRequest被写入到了session的写队列中了。那么问题来了,这个写队列是从哪冒出来的,它是如何创建,又是谁从这个队列中把写请求取出来,发送出去的呢?
从AbstractIoSession.getWriteRequestQueue方法,我们知道其中的WriteRequestQueue实例,是被set进去的,到底是在哪里被set进去的呢,我们看前面提到的方法AbstractPollingIoAcceptor<S extends AbstractIoSession, H>.processHandles,在这个方法中调用了initSession方法,它是用来初始化session,按理说应该在这里,该方法是在AbstractIoService类中定义的.
@SuppressWarnings("unchecked")
    protected final void initSession(IoSession session, IoFuture future, IoSessionInitializer sessionInitializer) {
          。。。
        // Every property but attributeMap should be set now.
        // Now initialize the attributeMap.  The reason why we initialize
        // the attributeMap at last is to make sure all session properties
        // such as remoteAddress are provided to IoSessionDataStructureFactory.
        try {
            ((AbstractIoSession) session).setAttributeMap(session.getService().getSessionDataStructureFactory()
                    .getAttributeMap(session));

        } catch (IoSessionInitializationException e) {
            throw e;
        } catch (Exception e) {
            throw new IoSessionInitializationException("Failed to initialize an attributeMap.", e);
        }

        try {
            ((AbstractIoSession) session).setWriteRequestQueue(session.getService().getSessionDataStructureFactory()
                    .getWriteRequestQueue(session));

        } catch (IoSessionInitializationException e) {
            throw e;
        } catch (Exception e) {
            throw new IoSessionInitializationException("Failed to initialize a writeRequestQueue.", e);
        }

        if ((future != null) && (future instanceof ConnectFuture)) {
            // DefaultIoFilterChain will notify the future. (We support ConnectFuture only for now).
            session.setAttribute(DefaultIoFilterChain.SESSION_CREATED_FUTURE, future);
        }

        if (sessionInitializer != null) {
            sessionInitializer.initializeSession(session, future);
        }

        finishSessionInitialization0(session, future);
    }
从该方法中可以看到,session的WriteRequestQueue实例,实际上就是session.getService().getSessionDataStructureFactory().getWriteRequestQueue(session)。好吧,我们还得接着寻找,session.getService是谁呢?这里的session显然是NioSession,service是NioSocketAcceptor,getSessionDataStructureFactory方法是在基类AbstractIoService中定义的,在默认情况下,get出来的实例,是DefaultIoSessionDataStructureFactory的类实例,我们再来看这个类
public class DefaultIoSessionDataStructureFactory implements IoSessionDataStructureFactory {

    public IoSessionAttributeMap getAttributeMap(IoSession session) throws Exception {
        return new DefaultIoSessionAttributeMap();
    }

    public WriteRequestQueue getWriteRequestQueue(IoSession session) throws Exception {
        return new DefaultWriteRequestQueue();
    }

    private static class DefaultIoSessionAttributeMap implements IoSessionAttributeMap {
        private final ConcurrentHashMap<Object, Object> attributes = new ConcurrentHashMap<Object, Object>(4);

          。。。
     }
     private static class DefaultWriteRequestQueue implements WriteRequestQueue {
        /** A queue to store incoming write requests */
        private final Queue<WriteRequest> q = new ConcurrentLinkedQueue<WriteRequest>();

          。。。
     }
}
最终我们看到session.getService().getSessionDataStructureFactory().getWriteRequestQueue(session),实际上得到的是 new DefaultWriteRequestQueue(),这个类实际上是对ConcurrentLinkedQueue实例的封装,也就是说我们所添加的WriteRequest都是添加到ConcurrentLinkedQueue这个实例中的。
综上所述,在初始化session的时候,把IoService都会new一个WriteRequestQueue实例赋值给session,同时,为了防止多个线程在读写这个Queue的时候发生竞争,这里使用了ConcurrentLinkedQueue。
我们返回来再看HeadFilter.filterWrite方法,其中:
s.getProcessor().write(s, writeRequest);
其中的write方法,对应AbstractPollingIoProcessor.write
public void write(S session, WriteRequest writeRequest) {
        WriteRequestQueue writeRequestQueue = session.getWriteRequestQueue();

        writeRequestQueue.offer(session, writeRequest);

        if (!session.isWriteSuspended()) {
            this.flush(session);
        }
    }
这里可以看到WriteRequest被添加到session的WriteRequestQueue中,然后调用了AbstractPollingIoProcessor.flush方法,这里的flush,只是把session加入到flushingSessions队列中。在IoProcessor的分析中,我们会知道有一个processor的线程,专门会从session中读取WriteRequest,然后通过session的Channel把数据发送出去。
至此,我们来回顾整个发送数据的过程,首先是在IoService中创建IoSession的时候,会给它创建一个写队列,其次IoSession的写操作,都是放入到这个写队列中的,最后,IoProccessor的线程会去读这个写队列最终通过底层Channel把数据发送出去。

下面我们还需要分析读操作是如何处理的,既然是读数据,必然是从网络中获取数据,这就着落在processor线程中了,在AbstractPollingIoProcessor.processor类中调用了process方法,这个方法在判断session可读的情况下回调用read方法,read方法会从session的channel中读取数据,然后触发session的MessageReceived事件,如果session结束了,还会去触发InputClosed事件,当然,如果session出现了异常,会触发ExceptionCaught事件,这里的事件也是通过filterChain触发,前面分析过,这个filterChain实例是DefaultIoFilterChain,它的fireMessageReceived方法是从head到tail遍历链表,在它的tailFilter.messageReceived方法中触发了handler.messageReceived方法,也就是说,这个事件传递首先是传递给各个filter,最终再传递给handler的,这是符合我们要求filter先进行各种处理,最终交给handler来处理的需求。
同理,Inputclosed和ExceptionCaught这两个事件,也是从head到tail遍历的,最终交给handler处理。

3.Session是如何读取和设置属性的?
最后,我们再来看看Session是如何存取属性的,经过前面的分析,我们看到在初始化Session的时候initSession,除了给这个Session初始化了WriteRequestQueue,同时也初始化了AttributeMap
 ((AbstractIoSession) session).setAttributeMap(session.getService().getSessionDataStructureFactory()
                    .getAttributeMap(session));
同样的,在DefaultIoSessionDataStructureFactory中,也为每个session都生成了一个DefaultIoSessionAttributeMap的实例,这个实例封装了一个ConcurrentHashMap实例,这同样是为了在多线程读取该实例的时候,能够正常访问数据。

IoProcessor

IoProcessor及其附属类是一个很重要的类,它们是真正进行读写数据的类,在AbstractPollingIoProcessor类,要想深入了解IoProcess,需要回答以下两个问题:
1.谁创建了IoProcessor
在AbstractPollingIoAcceptor的构造函数中,需要指明IoProcessor的类,在其派生类NioSocketAcceptor类中指明使用NioProcessor.class。在AbstractPollingIoAcceptor的构造函数中,是这样使用这个类的,
new SimpleIoProcessorPool<S>(processorClass)
SimpleIoProcessorPool类在构造函数中使用class.newInstance,创建了若干个IoProcessor,个数可以是通过参数指定的,也可以使用默认的,即CPU核数+1。SimpleIoProcessorPool本身也是一个IoProcessor,它实际上对外提供了IoProcessor的接口,实现上是根据Session,在它的pool中选择一个Processor,然后设置给Session,后续的操作,如add,remove都是在这个特定的processor上执行的。
2.IoProcessor的运行机制
在前面分析IoService的时候,我们知道在acceptor线程accept一个新的session的时候,会把这个session加入到它的processor中,也就是会调用AbstractPollingIoProcessor.add方法,它实际上只是把session加入到newSessions队列中,并启动了一个新的线程processor,当然,此时是运行在acceptor线程上的。具体的读写数据是在processor线程上执行的。当然为了线程间的竞争,newSessions也是用了ConcurrentLinkedQueue类。
我们来看AbstractPollingIoProcessor.Processor
private class Processor implements Runnable {
        public void run() {
            assert (processorRef.get() == this);

            int nSessions = 0;
            lastIdleCheckTime = System.currentTimeMillis();

            for (;;) {
                try {
                    // This select has a timeout so that we can manage
                    // idle session when we get out of the select every
                    // second. (note : this is a hack to avoid creating
                    // a dedicated thread).
                    long t0 = System.currentTimeMillis();
                    int selected = select(SELECT_TIMEOUT);//select事件,看是否有读写,关闭事件发生
                    long t1 = System.currentTimeMillis();
                    long delta = (t1 - t0);

                    if ((selected == 0) && !wakeupCalled.get() && (delta < 100)) {
                        // Last chance : the select() may have been
                        // interrupted because we have had an closed channel.
                        if (isBrokenConnection()) {
                            LOG.warn("Broken connection");

                            // we can reselect immediately
                            // set back the flag to false
                            wakeupCalled.getAndSet(false);

                            continue;
                        } else {
                            LOG.warn("Create a new selector. Selected is 0, delta = " + (t1 - t0));
                            // Ok, we are hit by the nasty epoll
                            // spinning.
                            // Basically, there is a race condition
                            // which causes a closing file descriptor not to be
                            // considered as available as a selected channel, but
                            // it stopped the select. The next time we will
                            // call select(), it will exit immediately for the same
                            // reason, and do so forever, consuming 100%
                            // CPU.
                            // We have to destroy the selector, and
                            // register all the socket on a new one.
                            registerNewSelector();
                        }

                        // Set back the flag to false
                        wakeupCalled.getAndSet(false);

                        // and continue the loop
                        continue;
                    }

                    // Manage newly created session first
                    nSessions += handleNewSessions();//这里会处理newSessions,就是在acceptor线程中add进来的,基本上来说,就是创建filterChain,并触发sessionCreated事件和sessionOpen事件,

                    updateTrafficMask();

                    // Now, if we have had some incoming or outgoing events,
                    // deal with them
                    if (selected > 0) {
                        //LOG.debug("Processing ..."); // This log hurts one of the MDCFilter test...
                        process();//这里会对发生了事件的session进行处理,如果session是读事件,会调用session底层的channel去读数据,并触发session的messageReceived时间,如果session是写事件,会把session加入到flushingSessions队列里
                    }

                    // Write the pending requests
                    long currentTime = System.currentTimeMillis();
                    flush(currentTime);//这里会处理flushingSessions队列,调用session底层的channel去发送数据

                    // And manage removed sessions
                    nSessions -= removeSessions();

                    // Last, not least, send Idle events to the idle sessions
                    notifyIdleSessions(currentTime);

                    // Get a chance to exit the infinite loop if there are no
                    // more sessions on this Processor
                    if (nSessions == 0) {
                        processorRef.set(null);

                        if (newSessions.isEmpty() && isSelectorEmpty()) {
                            // newSessions.add() precedes startupProcessor
                            assert (processorRef.get() != this);
                            break;
                        }

                        assert (processorRef.get() != this);

                        if (!processorRef.compareAndSet(null, this)) {
                            // startupProcessor won race, so must exit processor
                            assert (processorRef.get() != this);
                            break;
                        }

                        assert (processorRef.get() == this);
                    }

                    // Disconnect all sessions immediately if disposal has been
                    // requested so that we exit this loop eventually.
                    if (isDisposing()) {
                        for (Iterator<S> i = allSessions(); i.hasNext();) {
                            scheduleRemove(i.next());
                        }

                        wakeup();
                    }
                } catch (ClosedSelectorException cse) {
                    // If the selector has been closed, we can exit the loop
                    // But first, dump a stack trace
                    ExceptionMonitor.getInstance().exceptionCaught(cse);
                    break;
                } catch (Exception e) {
                    ExceptionMonitor.getInstance().exceptionCaught(e);

                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e1) {
                        ExceptionMonitor.getInstance().exceptionCaught(e1);
                    }
                }
            }

            try {
                synchronized (disposalLock) {
                    if (disposing) {
                        doDispose();
                    }
                }
            } catch (Exception e) {
                ExceptionMonitor.getInstance().exceptionCaught(e);
            } finally {
                disposalFuture.setValue(true);
            }
        }
    }
根据以上对IoService,IoSession,IoProcessor的分析,我们知道对于服务器端的程序,在用户程序的主线程中调用acceptor的bind方法,实际上启动了一个acceptor线程用来accept新的session,如果有新的session到来,会有在session加入到processor的过程中,会启动一个processor线程,如果当前CPU是多核的话,下一个sesion的到来,会启动另外一个processor线程。这些processor线程是用来检查是否有读写事件的。用户添加到filterChain的filter都是在这个线程中执行的,最后会把事件传递给handler进行最终的处理。也就是说,当有多个session的时候,会有多个processor线程,session的个数是大于等于processor的个数的。同时,一个processor会对应多个session,单一个session只对应一个processor线程。
Mina的高性能,来源于nio的多路复用机制
参看http://ifeve.com/netty-mina-in-depth-1/
Mina的线程模型被称为所谓的reactors in threads,即一个线程负责接收用户请求,即acceptor线程,另外几个线程负责处理session的读写,注意线程之间是通过共享Concurrent的队列来实现请求的移交的,除此之外,他们并没有消息的交互,它们完全靠系统的线程切换来运行,这就降低了编程的复杂性。
对于参考文章中提到的reactors in threads和thread pools,其实实现上也类似,就是在发现读写事件的时候,把它加入到一个Concurrent的队列中,然后新启动一个线程专门用来读取这个队列来进行计算。





mina架构分析