首页 > 代码库 > Centos下装eclipse测试Hadoop

Centos下装eclipse测试Hadoop

(一),安装eclipse

   1,下载eclipse,点这里

   2,将文件上传到Centos7,可以用WinSCP

   3,解压并安装eclipse    

    [root@Master opt]# tar zxvf ‘/home/s/eclipse-jee-neon-1a-linux-gtk-x86_64.tar.gz‘ -C/opt  ---------------> 建立文件:[root@Master opt]# mkdir /usr/bin/eclipse     ------------------》添加链接,即快捷方式:[root@Master opt]# ln -s /opt/eclipse/eclipse /usr/bin/eclipse -----------》点击eclipse,即可启动了


(二),建立Hadoop项目

    1,下载hadoop plugin 2.7.3   链接:http://pan.baidu.com/s/1i5yRyuh 密码:ms91

    2,解压上述jar包插件,放到eclipse中plugins中,并重启eclipse

    2, 在eclipse中加载dfs库,点击Windows 工具栏-------->选择show view如图:

            技术分享

    2,打开resource  点击Window ----->Perspective----------->open Perspective  选择resource:

技术分享

    3,配置连接端口,点击eclipse下放的MapResource Location,点击添加:其中port号按照hdfs-site.xml 和core-site.xml来填写。

技术分享

    4,上传输入文件:使用hdfs dfs -put /home/file1  /data 即可在eclipse中看到如下:(要确保各个机器的防火墙都关闭,出现异常可以暂时不用关,后面跑下例子就全没了,呵呵)

 技术分享


  (三),测试WordCount程序

   1,新建项目:点击new ------------》project ----------->Map Reduce,如图:

技术分享

   2,给项目配置本地的hadoop文件,圆圈处写本地hadoop的路径:

    技术分享

   3,新建个mappert类,写如下代码:

    

技术分享
 1 package word;
 2 
 3 import java.io.IOException;
 4 import java.util.StringTokenizer;
 5 
 6 import org.apache.hadoop.conf.Configuration;
 7 import org.apache.hadoop.fs.Path;
 8 import org.apache.hadoop.io.IntWritable;
 9 import org.apache.hadoop.io.Text;
10 import org.apache.hadoop.mapreduce.Job;
11 import org.apache.hadoop.mapreduce.Mapper;
12 import org.apache.hadoop.mapreduce.Reducer;
13 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
14 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
15 import org.apache.hadoop.util.GenericOptionsParser;
16 
17 public class mapper {
18 
19 public static class TokenizerMapper 
20 extends Mapper<Object, Text, Text, IntWritable>{
21 
22 private final static IntWritable one = new IntWritable(1);
23 private Text word = new Text();
24 
25 public void map(Object key, Text value, Context context
26 ) throws IOException, InterruptedException {
27 StringTokenizer itr = new StringTokenizer(value.toString());
28 while (itr.hasMoreTokens()) {
29 word.set(itr.nextToken());
30 context.write(word, one);
31 }
32 }
33 }
34 
35 public static class IntSumReducer 
36 extends Reducer<Text,IntWritable,Text,IntWritable> {
37 private IntWritable result = new IntWritable();
38 
39 public void reduce(Text key, Iterable<IntWritable> values, 
40 Context context
41 ) throws IOException, InterruptedException {
42 int sum = 0;
43 for (IntWritable val : values) {
44 sum += val.get();
45 }
46 result.set(sum);
47 context.write(key, result);
48 }
49 }
50 
51 public static void main(String[] args) throws Exception {
52 Configuration conf = new Configuration();
53 
54 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
55 if (otherArgs.length != 2) {
56 System.err.println(otherArgs.length);
57 System.err.println("Usage: wordcount <in> <out>");
58 System.exit(2);
59 }
60 Job job = new Job(conf, "word count");
61 job.setJarByClass(mapper.class);
62 job.setMapperClass(TokenizerMapper.class);
63 job.setCombinerClass(IntSumReducer.class);
64 job.setReducerClass(IntSumReducer.class);
65 job.setOutputKeyClass(Text.class);
66 job.setOutputValueClass(IntWritable.class);
67 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
68 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
69 System.out.print("ok");
70 System.exit(job.waitForCompletion(true) ? 0 : 1);
71 }
72 }
技术分享

2,点击run as ------------>RunConfigurations ---------->设置input和output文件参数

  技术分享

3,点击run,查看结果

  技术分享

  文件的内容:

    技术分享

 


 

Centos下装eclipse测试Hadoop