首页 > 代码库 > Kth Largest Element
Kth Largest Element
Node:
Quick Select: Avg O(N)
Thought: put all the element less(more) than pivot to the first part, the rest to the second part. And Kth only falls to one of the two sections. Just using the same idea to process that part is enough.
class Solution { /* * @param k : description of k * @param nums : array of nums * @return: description of return */ public int kthLargestElement(int k, int[] nums) { // write your code here if (nums == null || nums.length == 0) { return -1; } return quickSelect(nums, 0, nums.length - 1, k); } private int quickSelect(int[] nums, int start, int end, int k) { if (start == end) { return nums[start]; } int pivot = nums[start + (end - start) / 2]; int left = start; int right = end; while (left <= right) { while (left <= right && nums[left] > pivot) { left++; } while (left <= right && nums[right] < pivot) { right--; } if (left <= right) { int tmp = nums[left]; nums[left] = nums[right]; nums[right] = tmp; left++; right--; } } if (start + k - 1 <= right) { return quickSelect(nums, start, right, k); } if (start + k - 1 >= left) { //This is the k -(left - start)th of the last part return quickSelect(nums, left, end, k - (left - start)); } return nums[right + 1]; } };
Kth Largest Element
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。