首页 > 代码库 > GPU编程-Thread Hierarchy(3)
GPU编程-Thread Hierarchy(3)
1. 如果处理的数据是二维的或者三维的,应该怎么办呢?
针对的,我们可以按照二维或者三维的方式,组织线程。老规矩,先代码、后解释
// Kernel definition __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) { int i = threadIdx.x; int j = threadIdx.y; C[i][j] = A[i][j] + B[i][j]; } int main() { ... // Kernel invocation with one block of N * N * 1 threads int numBlocks = 1; dim3 threadsPerBlock(N, N); MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); ... }
线程可以一维、二维或者三维的方式,组织成Block,在上述代码中,我们指定有一个Block,这个Block按照NxN的二维结构进行组织。如果N就是矩阵相应的维度,那么上述代码块完成的功能就是矩阵对应元素相加。
2.受GPU资源的限制,每一个Block所含线程个数有限(一般情况下,最多为1024个),如果矩阵的维度超过了线程个数上限,是不是就计算不了大型矩阵的对应元素相加了呢?
答案是否定的。如果将Block看做一个基本组成单元,Block又可以按照一维、二维或者三维的形式组织成grid。Blcok、grid、thread的关系如下图所示
如果矩阵的维度超过了Block能够包含线程的上限,我们可采取以下方式应对(先代码,后解释)
// Kernel definition __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; if (i < N && j < N) C[i][j] = A[i][j] + B[i][j]; } int main() { ... // Kernel invocation dim3 threadsPerBlock(16, 16); dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y); MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); ... }
在上述代码中,N代表矩阵的维度,每一个Block按照16x16的二维结构组织,这样每一个Block只能够处理大型矩阵一个很小的patch。一般情况下,grid所有的thread是自然是顺序排列的(此时的Block索引可以理解为一种二级索引,一级索引指的是直接索引thread)。上述代码就是先将大型矩阵分解为Block,然后由Block里的线程完成具体的矩阵对应元素相加操作。
“The number of thread blocks in a grid is usually dictated by the size of the data being processed or the number of processors in the system, which it can greatly exceed.”
3. Block是并行执行的,假如所需Block数量超出GPU所能提供的Block的限制,会出现什么情况呢?
如上图所示,grid内的Block根据GPU的具体情况,选择顺序执行或者并行执行。
总结:线程的组织方式既能够匹配GPU硬件又能够处理大量数据,是一种很巧妙的安排。
GPU编程-Thread Hierarchy(3)