首页 > 代码库 > 计蒜客-第五场初赛-第二题 UCloud 的安全秘钥(简单)
计蒜客-第五场初赛-第二题 UCloud 的安全秘钥(简单)
每个 UCloud 用户会构造一个由数字序列组成的秘钥,用于对服务器进行各种操作。作为一家安全可信的云计算平台,秘钥的安全性至关重要。因此,UCloud 每年会对用户的秘钥进行安全性评估,具体的评估方法如下:
首先,定义两个由数字序列组成的秘钥 aa 和 bb近似匹配(\approx≈) 的关系。aa 和 bb 近似匹配当且仅当同时满足以下两个条件:
- |a|=|b|∣a∣=∣b∣,即 aa 串和 bb 串长度相等。
- 对于每种数字 cc,cc 在 aa 中出现的次数等于cc 在 bb 中出现的次数。
此时,我们就称 aa 和 bb 近似匹配,即 a \approx ba≈b。例如,(1,3,1,1,2)\approx(2,1,3,1,1)(1,3,1,1,2)≈(2,1,3,1,1)。
UCloud 每年会收集若干不安全秘钥,这些秘钥组成了不安全秘钥集合 TT。对于一个秘钥 ss 和集合 TT 中的秘钥 tt 来说,它们的相似值定义为:ss 的所有连续子串中与 tt 近似匹配的个数。相似值越高,说明秘钥 ss 越不安全。对于不安全秘钥集合 TT 中的每个秘钥 tt,你需要输出它和秘钥 ss 的相似值,用来对用户秘钥的安全性进行分析。
输入格式
第一行包含一个正整数 nn,表示 ss 串的长度。
第二行包含 nn 个正整数 s_1,s_2,...,s_n(1\leq s_i\leq n)s?1??,s?2??,...,s?n??(1≤s?i??≤n),表示 ss 串。
接下来一行包含一个正整数 mm,表示询问的个数。
接下来 mm 个部分:
每个部分第一行包含一个正整数 k(1\leq k\leq n)k(1≤k≤n),表示每个 tt 串的长度。
每个部分第二行包含 kk 个正整数 t_1,t_2,...,t_k(1\leq t_i\leq n)t?1??,t?2??,...,t?k??(1≤t?i??≤n),表示 TT 中的一个串 tt。
输入数据保证 TT 中所有串长度之和不超过 200000200000。
对于简单版本:1\leq n,m\leq 1001≤n,m≤100;
对于中等版本:1\leq n\leq 50000,1\leq m\leq 5001≤n≤50000,1≤m≤500;
对于困难版本:1 \le n \le 50000, 1 \le m \le 1000001≤n≤50000,1≤m≤100000。
输出格式
输出 mm 行,每行一个整数,即与 TT 中每个串 tt近似匹配的 ss 的子串数量。
样例解释
对于第一个询问,(3,2,1,3)\approx(2,3,1,3)(3,2,1,3)≈(2,3,1,3),(3,2,1,3)\approx(3,1,3,2)(3,2,1,3)≈(3,1,3,2);
对于第二个询问,(1,3)\approx(3,1)(1,3)≈(3,1),(1,3)\approx(1,3)(1,3)≈(1,3);
对于第三个询问,(3,2)\approx(2,3)(3,2)≈(2,3),(3,2)\approx(3,2)(3,2)≈(3,2)。
样例输入
5 2 3 1 3 2 3 4 3 2 1 3 2 1 3 2 3 2
样例输出
2 2 2
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<vector> #include<cmath> #include<algorithm> #define maxn 50010 using namespace std; int a[maxn]; int b[maxn], c[maxn],d[maxn]; int T, n, m, num; int main() { cin >> n; int p = 0; for(int i=0; i<n; i++) { cin >> a[i]; d[p++] = a[i]; } cin >> T; while( T -- ) { cin >> m; memset(b, 0, sizeof(b)); for(int i=0; i<m; i++) { cin >> num; b[num] ++; } int sum = 0; for(int i=0; i<=n-m; i++)//枚举到n-m即枚举了所有可能 { memset(c, 0, sizeof(c)); for(int j=0; j<m; j++) { c[a[i+j]]++; } int flag = 1; for(int i=0; i<p; i++) { if( b[d[i]]!=c[d[i]] ) { flag = 0; break; } } if( flag ) sum++; } cout << sum << endl; } return 0; }
对于一个长度为 lenlen 的询问,枚举 ss 的一个长度为 lenlen 的子串,然后暴力检验两个集合是否相同即可。
时间复杂度 O(n^2m)O(n?2??m)。
计蒜客-第五场初赛-第二题 UCloud 的安全秘钥(简单)