首页 > 代码库 > VINS(二)Feature Detection and Tracking
VINS(二)Feature Detection and Tracking
系统入口是feature_tracker_node.cpp文件中的main函数
首先创建feature_tracker节点,从配置文件中读取信息(parameters.cpp),包括:
- ROS中发布订阅的话题名称;
- 图像尺寸;
- 优化参数(最大求解时间以保证实时性,不卡顿;对大迭代次数,避免冗余计算;视差阈值,用于选取sliding window中的关键帧);
- imu参数,包括加速度计陀螺仪的测量噪声标准差、零偏随机游走噪声标准差,重力值(imu放火星上需要改变);
- imu和camera之间的外参R,t;可选(0)已知精确的外参,运行中无需改变,(1)已知外参初值,运行中优化,(2)什么都不知道,在线初始化中标定
- 闭环参数,包括brief描述子的pattern文件(前端视觉使用光流跟踪,不需要计算描述子),针对场景训练好的DBow二进制字典文件;
imu_topic: "/imu0" image_topic: "/cam0/image_raw" image_width: 752 image_height: 480 #optimization parameters max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time max_num_iterations: 8 # max solver itrations, to guarantee real time keyframe_parallax: 10.0 # keyframe selection threshold (pixel) #imu parameters The more accurate parameters you provide, the better performance acc_n: 0.2 # accelerometer measurement noise standard deviation. #0.2 gyr_n: 0.02 # gyroscope measurement noise standard deviation. #0.05 acc_w: 0.0002 # accelerometer bias random work noise standard deviation. #0.02 gyr_w: 2.0e-5 # gyroscope bias random work noise standard deviation. #4.0e-5 g_norm: 9.81007 # gravity magnitude # Extrinsic parameter between IMU and Camera. estimate_extrinsic: 1 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don‘t change it. # 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess. # 2 Don‘t know anything about extrinsic parameters. You don‘t need to give R,T. We will try to calibrate it. Do some rotation movement at beginning. #loop closure parameters loop_closure: 1 #if you want to use loop closure to minimize the drift, set loop_closure true and give your brief pattern file path and vocabulary file path accordingly; #also give the camera calibration file same as feature_tracker node pattern_file: "/support_files/brief_pattern.yml" voc_file: "/support_files/brief_k10L6.bin" min_loop_num: 25
VINS(二)Feature Detection and Tracking
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。