首页 > 代码库 > 线程学习--(十三)重写锁、读写锁、锁的高级深化
线程学习--(十三)重写锁、读写锁、锁的高级深化
一、Concurrent.util常用类
1.CountDownLacth使用:
他经常用于监听某些初始化操作,等初始化执行完毕后,通知主线程继续工作
package thread3; import java.util.concurrent.CountDownLatch; public class UseCountDownLatch { public static void main(String[] args) { final CountDownLatch countDown = new CountDownLatch(2); Thread t1 = new Thread(new Runnable() { @Override public void run() { try { System.out.println("进入线程t1" + "等待其他线程处理完成..."); countDown.await(); System.out.println("t1线程继续执行..."); } catch (InterruptedException e) { e.printStackTrace(); } } },"t1"); Thread t2 = new Thread(new Runnable() { @Override public void run() { try { System.out.println("t2线程进行初始化操作..."); Thread.sleep(3000); System.out.println("t2线程初始化完毕,通知t1线程继续..."); countDown.countDown(); } catch (InterruptedException e) { e.printStackTrace(); } } }); Thread t3 = new Thread(new Runnable() { @Override public void run() { try { System.out.println("t3线程进行初始化操作..."); Thread.sleep(4000); System.out.println("t3线程初始化完毕,通知t1线程继续..."); countDown.countDown(); } catch (InterruptedException e) { e.printStackTrace(); } } }); t1.start(); t2.start(); t3.start(); } }
2.CyclicBarrier使用
假设有一个场景:每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个人没有准备好,大家都等待。
package com.bjsxt.height.concurrent019; import java.io.IOException; import java.util.Random; import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class UseCyclicBarrier { static class Runner implements Runnable { private CyclicBarrier barrier; private String name; public Runner(CyclicBarrier barrier, String name) { this.barrier = barrier; this.name = name; } @Override public void run() { try { Thread.sleep(1000 * (new Random()).nextInt(5)); System.out.println(name + " 准备OK."); barrier.await(); } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e) { e.printStackTrace(); } System.out.println(name + " Go!!"); } } public static void main(String[] args) throws IOException, InterruptedException { CyclicBarrier barrier = new CyclicBarrier(3); // 3 ExecutorService executor = Executors.newFixedThreadPool(3); executor.submit(new Thread(new Runner(barrier, "zhangsan"))); executor.submit(new Thread(new Runner(barrier, "lisi"))); executor.submit(new Thread(new Runner(barrier, "wangwu"))); executor.shutdown(); } }
3. Callable和Futured使用
其实就是上篇实现的future模式,jdk给予我们一个实现的封装,使用非常简单
future模式非常适合在处理很耗时很长的业务逻辑进行实现,可以有效地减小系统响应时间,提高系统吞吐量。
package readwritlock; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.Executor; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.FutureTask; public class UseFuture implements Callable<String>{ private String para; public UseFuture(String para){ this.para=para; } /** * 这里是真实的业务逻辑,其执行可能很慢 */ @Override public String call() throws Exception { Thread.sleep(3000); String result=this.para+"处理完成"; return result; } public static void main(String[] args) { try { String queryStr="query"; //构造FutureTask,并且传入需要真正进行业务逻辑处理的类,该类一定要实现Callable接口的类 FutureTask<String> future=new FutureTask<String>(new UseFuture(queryStr)); //创建一个固定线程的线程池且线程数为1, ExecutorService executor=Executors.newFixedThreadPool(1); //这里提交任务future,开启线程并执行call方法 //submit和execute的区别: //第一点submit可以传入实现Callable接口的实例对象, //第二点是submit方法有返回值 Future f=executor.submit(future); System.out.println("请求完毕"); System.out.println(future.get()); //获取成功返回null值(任务处理完成返回) System.out.println(f.get()); //获取返回结果 executor.shutdown(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (ExecutionException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }
4.
5.ReentrantLock(重入锁)
重入锁,在需要进行同步的代码部分加上锁定,但不要忘记最后一定要释放锁定,不然会造成永远无法释放,其他线程永远进不来的结果
package com.bjsxt.height.lock020; import java.util.concurrent.CopyOnWriteArrayList; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class UseReentrantLock { private Lock lock = new ReentrantLock(); public void method1(){ try { lock.lock(); System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method1.."); Thread.sleep(1000); System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method1.."); Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public void method2(){ try { lock.lock(); System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method2.."); Thread.sleep(2000); System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method2.."); Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) { final UseReentrantLock ur = new UseReentrantLock(); Thread t1 = new Thread(new Runnable() { @Override public void run() { ur.method1(); ur.method2(); } }, "t1"); t1.start(); try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } //System.out.println(ur.lock.getQueueLength()); } }
还记得我们在使用synchronized的时候,如果需要多线程间进行写作工作则需要Object的wait()和notify(),notifyAll() 方法进行配合合作,
那么同样,我们在使用lock的时候,可以使用一个新的等待通知的类,他就是Condition。这个condition一定是针对具体某一把锁的。也就是只有锁的基础上才会产生Condition
package com.bjsxt.height.lock020; import java.util.concurrent.CopyOnWriteArrayList; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class UseCondition { private Lock lock = new ReentrantLock(); private Condition condition = lock.newCondition(); public void method1(){ try { lock.lock(); System.out.println("当前线程:" + Thread.currentThread().getName() + "进入等待状态.."); Thread.sleep(3000); System.out.println("当前线程:" + Thread.currentThread().getName() + "释放锁.."); condition.await(); // Object wait System.out.println("当前线程:" + Thread.currentThread().getName() +"继续执行..."); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void method2(){ try { lock.lock(); System.out.println("当前线程:" + Thread.currentThread().getName() + "进入.."); Thread.sleep(3000); System.out.println("当前线程:" + Thread.currentThread().getName() + "发出唤醒.."); condition.signal(); //Object notify } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) { final UseCondition uc = new UseCondition(); Thread t1 = new Thread(new Runnable() { @Override public void run() { uc.method1(); } }, "t1"); Thread t2 = new Thread(new Runnable() { @Override public void run() { uc.method2(); } }, "t2"); t1.start(); t2.start(); } }
多Condition
我们可以通过一个Lock对象产生多个Condition进行多线程间的交互,非常的灵活,可以使得部分需要唤醒的线程唤醒,其他线程则继续等待通知。
package com.bjsxt.height.lock020; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class UseManyCondition { private ReentrantLock lock = new ReentrantLock(); private Condition c1 = lock.newCondition(); private Condition c2 = lock.newCondition(); public void m1(){ try { lock.lock(); System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m1等待.."); c1.await(); System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m1继续.."); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void m2(){ try { lock.lock(); System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m2等待.."); c1.await(); System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m2继续.."); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void m3(){ try { lock.lock(); System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m3等待.."); c2.await(); System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m3继续.."); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void m4(){ try { lock.lock(); System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒.."); c1.signalAll(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void m5(){ try { lock.lock(); System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒.."); c2.signal(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) { final UseManyCondition umc = new UseManyCondition(); Thread t1 = new Thread(new Runnable() { @Override public void run() { umc.m1(); } },"t1"); Thread t2 = new Thread(new Runnable() { @Override public void run() { umc.m2(); } },"t2"); Thread t3 = new Thread(new Runnable() { @Override public void run() { umc.m3(); } },"t3"); Thread t4 = new Thread(new Runnable() { @Override public void run() { umc.m4(); } },"t4"); Thread t5 = new Thread(new Runnable() { @Override public void run() { umc.m5(); } },"t5"); t1.start(); // c1 t2.start(); // c1 t3.start(); // c2 try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } t4.start(); // c1 try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } t5.start(); // c2 } }
6.ReentrantReadWriteLock(读写锁)
读写锁ReentrantReadWriteLock,其核心就是实现读写分离的锁。在高并发访问下,尤其是读多写少的情况下,性能要远高于重入锁。
之前学synchronized,ReentrantLock时,我们知道,同一时间,只能有一个线程进行访问被锁定的代码,那么读写锁则不同,其本质分成两个锁,即读锁、写锁,在读锁下,多线程可以并发的进行访问,但是在写锁的时候,只能一个一个的顺序访问
口诀:读读共享,写写互斥,读写互斥
package com.bjsxt.height.lock021; import java.util.concurrent.locks.ReentrantReadWriteLock; import java.util.concurrent.locks.ReentrantReadWriteLock.ReadLock; import java.util.concurrent.locks.ReentrantReadWriteLock.WriteLock; public class UseReentrantReadWriteLock { private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock(); private ReadLock readLock = rwLock.readLock(); private WriteLock writeLock = rwLock.writeLock(); public void read(){ try { readLock.lock(); System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..."); Thread.sleep(3000); System.out.println("当前线程:" + Thread.currentThread().getName() + "退出..."); } catch (Exception e) { e.printStackTrace(); } finally { readLock.unlock(); } } public void write(){ try { writeLock.lock(); System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..."); Thread.sleep(3000); System.out.println("当前线程:" + Thread.currentThread().getName() + "退出..."); } catch (Exception e) { e.printStackTrace(); } finally { writeLock.unlock(); } } public static void main(String[] args) { final UseReentrantReadWriteLock urrw = new UseReentrantReadWriteLock(); Thread t1 = new Thread(new Runnable() { @Override public void run() { urrw.read(); } }, "t1"); Thread t2 = new Thread(new Runnable() { @Override public void run() { urrw.read(); } }, "t2"); Thread t3 = new Thread(new Runnable() { @Override public void run() { urrw.write(); } }, "t3"); Thread t4 = new Thread(new Runnable() { @Override public void run() { urrw.write(); } }, "t4"); // t1.start(); // t2.start(); // t1.start(); // R // t3.start(); // W t3.start(); t4.start(); } }
t1.start();
t2.start();
读读共享,基本上t1和t2是一起进入的,读锁多个线程是并发的访问
t1.start();
t3.start();
读写互斥,t1执行完后t3才执行
线程学习--(十三)重写锁、读写锁、锁的高级深化