首页 > 代码库 > 计算机网络基础

计算机网络基础

互联网本质就是一系列的网络协议

计算机硬件装上操作系统,再装上软件就可以正常使用了,但是只能自己使用,如果要和其他计算机通信,那就必须得有网络协议。

如图:

技术分享

 

 

互联网协议 (internet pretocol suite),它就是连接在计算机之间的,定义计算机如何介入internet,以及接入的计算机通信的标准

协议模型

技术分享

 

 OSI七层、TCP/IP五层、TCP/IP四层

运行设备

技术分享

一、层与协议

每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。

大家都遵守的规则,就叫做"协议"(Protocol)。

互联网的每一层,都定义了很多协议。这些协议的总称,就叫做"互联网协议"(Internet Protocol Suite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。

二、物理层

我们从最底下的一层开始。

电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线等方式。

 

这就叫做"物理层",它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

三、数据链路层

3.1 定义

单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?

这就是"数据链路层"的功能,它在"实体层"的上方,确定了0和1的分组方式。

3.2 以太网协议

早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做"以太网"(Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。

 

"标头"包含数据包的一些说明项,比如发送者、接受者、数据类型等等;"数据"则是数据包的具体内容。

"标头"的长度,固定为18字节。"数据"的长度,最短为46字节,最长为1500字节。因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

3.3 MAC地址

上面提到,以太网数据包的"标头",包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

以太网规定,连入网络的所有设备,都必须具有"网卡"接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

 

每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。

 

6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

3.4 广播

定义地址只是第一步,后面还有更多的步骤。

首先,一块网卡怎么会知道另一块网卡的MAC地址?

回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。

其次,就算有了MAC地址,系统怎样才能把数据包准确送到接收方?

回答是以太网采用了一种很"原始"的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。

 

上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的"标头",找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做"广播"(broadcasting)。

有了数据包的定义、网卡的MAC地址、广播的发送方式,"链接层"就可以在多台计算机之间传送数据了。

四、网络层

4.1 网络层的由来

以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一"包",不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。

 

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用"路由"方式发送。("路由"的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了"网络层"的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做"网络地址",简称"网址"。

于是,"网络层"出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

4.2 IP协议

规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。

目前,广泛采用的是IP协议第四版,简称IPv4。这个版本规定,网络地址由32个二进制位组成。

 

习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。

但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。

那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数"子网掩码"(subnet mask)。

子网掩码表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

知道"子网掩码",我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

比如,已知IP地址172.16.254.1和172.16.254.233的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,结果都是172.16.254.0,因此它们在同一个子网络。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

4.3 IP数据包

根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。

但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?

回答是不需要,我们可以把IP数据包直接放进以太网数据包的"数据"部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

具体来说,IP数据包也分为"标头"和"数据"两个部分。

 

"标头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。

 

IP数据包的"标头"部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的"数据"部分,最长为65,515字节。前面说过,以太网数据包的"数据"部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

4.4 ARP协议

关于"网络层",还有最后一点需要说明。

因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。

所以,我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理。

第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

五、传输层

5.1 传输层的由来

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做"端口"(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

"端口"是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

"传输层"的功能,就是建立"端口到端口"的通信。相比之下,"网络层"的功能是建立"主机到主机"的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做"套接字"(socket)。有了它,就可以进行网络应用程序开发了。

5.2 UDP协议

现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由"标头"和"数据"两部分组成。

 

"标头"部分主要定义了发出端口和接收端口,"数据"部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的"数据"部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:

 

UDP数据包非常简单,"标头"部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

5.3 TCP协议

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。

为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的"数据"部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

TCP三次握手和四次挥手

技术分享

三次握手

用户端发送请求给服务端(标识SYN,seq=x),服务端收到请求后(SYN=1为确认通过,seq=x+1,为了标记确认是目标端)发送给C,此时C到S接通;反之同理,其中S端的确认信息和请求信息通过一次发送达成, 从而打通S到C,形成双向传输通道,这就是3次握手的原理。

四次挥手

为什么会四次,握手不是三次吗?是由于传输数据时,用户端数据传输完毕后切断,而服务器数据可能会有未传输完成的数据,需要等到传输完成才能断开,这个时间是不确定的,所以形成了四次挥手

 

六、应用层

应用程序收到"传输层"的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。

"应用层"的作用,就是规定应用程序的数据格式。

举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了"应用层"。

技术分享

实现网络通信

每台主机需具备四要素

  • 本机的IP地址
  • 子网掩码
  • 网关的IP地址
  • DNS的IP地址

获取这四要素分两种方式

1.静态获取

即手动配置

2.动态获取

通过dhcp获取

以太网头 ip头 udp头 dhcp数据包

 

(1)最前面的”以太网标头”,设置发出方(本机)的MAC地址和接收方(DHCP服务器)的MAC地址。前者就是本机网卡的MAC地址,后者这时不知道,就填入一个广播地址:FF-FF-FF-FF-FF-FF。

 

(2)后面的”IP标头”,设置发出方的IP地址和接收方的IP地址。这时,对于这两者,本机都不知道。于是,发出方的IP地址就设为0.0.0.0,接收方的IP地址设为255.255.255.255。

 

(3)最后的”UDP标头”,设置发出方的端口和接收方的端口。这一部分是DHCP协议规定好的,发出方是68端口,接收方是67端口。

 

这个数据包构造完成后,就可以发出了。以太网是广播发送,同一个子网络的每台计算机都收到了这个包。因为接收方的MAC地址是FF-FF-FF-FF-FF-FF,看不出是发给谁的,所以每台收到这个包的计算机,还必须分析这个包的IP地址,才能确定是不是发给自己的。当看到发出方IP地址是0.0.0.0,接收方是255.255.255.255,于是DHCP服务器知道”这个包是发给我的”,而其他计算机就可以丢弃这个包。

 

接下来,DHCP服务器读出这个包的数据内容,分配好IP地址,发送回去一个”DHCP响应”数据包。这个响应包的结构也是类似的,以太网标头的MAC地址是双方的网卡地址,IP标头的IP地址是DHCP服务器的IP地址(发出方)和255.255.255.255(接收方),UDP标头的端口是67(发出方)和68(接收方),分配给请求端的IP地址和本网络的具体参数则包含在Data部分。

 

新加入的计算机收到这个响应包,于是就知道了自己的IP地址、子网掩码、网关地址、DNS服务器等等参数

 

 

 

网络通信流程

1.本机获取

  • 本机的IP地址:192.168.1.100
  • 子网掩码:255.255.255.0
  • 网关的IP地址:192.168.1.1
  • DNS的IP地址:8.8.8.8

2.打开浏览器,想要访问Google,在地址栏输入了网址:www.google.com。

3.dns协议(基于udp协议)

技术分享

 

13台根dns:

A.root-servers.net198.41.0.4美国
B.root-servers.net192.228.79.201美国(另支持IPv6)
C.root-servers.net192.33.4.12法国
D.root-servers.net128.8.10.90美国
E.root-servers.net192.203.230.10美国
F.root-servers.net192.5.5.241美国(另支持IPv6)
G.root-servers.net192.112.36.4美国
H.root-servers.net128.63.2.53美国(另支持IPv6)
I.root-servers.net192.36.148.17瑞典
J.root-servers.net192.58.128.30美国
K.root-servers.net193.0.14.129英国(另支持IPv6)
L.root-servers.net198.32.64.12美国
M.root-servers.net202.12.27.33日本(另支持IPv6)

 

域名定义:http://jingyan.baidu.com/article/1974b289a649daf4b1f774cb.html

顶级域名:以.com,.net,.org,.cn等等属于国际顶级域名,根据目前的国际互联网域名体系,国际顶级域名分为两类:类别顶级域名(gTLD)和地理顶级域名(ccTLD)两种。类别顶级域名是                    以"COM"、"NET"、"ORG"、"BIZ"、"INFO"等结尾的域名,均由国外公司负责管理。地理顶级域名是以国家或地区代码为结尾的域名,如"CN"代表中国,"UK"代表英国。地理顶级域名一般由各个国家或地区负责管理。

二级域名:二级域名是以顶级域名为基础的地理域名,比喻中国的二级域有,.com.cn,.net.cn,.org.cn,.gd.cn等.子域名是其父域名的子域名,比喻父域名是abc.com,子域名就是www.abc.com或者*.abc.com.
一般来说,二级域名是域名的一条记录,比如alidiedie.com是一个域名,www.alidiedie.com是其中比较常用的记录,一般默认是用这个,但是类似*.alidiedie.com的域名全部称作是alidiedie.com的二级

 

 

4.HTTP部分的内容,类似于下面这样:

 

GET / HTTP/1.1
Host: www.google.com
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 6.1) ……
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: zh-CN,zh;q=0.8
Accept-Charset: GBK,utf-8;q=0.7,*;q=0.3
Cookie: … …

 

我们假定这个部分的长度为4960字节,它会被嵌在TCP数据包之中。

 

5 TCP协议

 

TCP数据包需要设置端口,接收方(Google)的HTTP端口默认是80,发送方(本机)的端口是一个随机生成的1024-65535之间的整数,假定为51775。

TCP数据包的标头长度为20字节,加上嵌入HTTP的数据包,总长度变为4980字节。

 

6 IP协议

 

然后,TCP数据包再嵌入IP数据包。IP数据包需要设置双方的IP地址,这是已知的,发送方是192.168.1.100(本机),接收方是172.194.72.105(Google)。

IP数据包的标头长度为20字节,加上嵌入的TCP数据包,总长度变为5000字节。

 

7 以太网协议

 

最后,IP数据包嵌入以太网数据包。以太网数据包需要设置双方的MAC地址,发送方为本机的网卡MAC地址,接收方为网关192.168.1.1的MAC地址(通过ARP协议得到)。

以太网数据包的数据部分,最大长度为1500字节,而现在的IP数据包长度为5000字节。因此,IP数据包必须分割成四个包。因为每个包都有自己的IP标头(20字节),所以四个包的IP数据包的长度分别为1500、1500、1500、560。

 

 

8 服务器端响应

 

经过多个网关的转发,Google的服务器172.194.72.105,收到了这四个以太网数据包。

根据IP标头的序号,Google将四个包拼起来,取出完整的TCP数据包,然后读出里面的”HTTP请求”,接着做出”HTTP响应”,再用TCP协议发回来。

本机收到HTTP响应以后,就可以将网页显示出来,完成一次网络通信。

 

 

 

计算机网络基础