首页 > 代码库 > hadoop多文件输出

hadoop多文件输出

现实环境中,常常遇到一个问题就是想使用多个Reduce,但是迫于setup和cleanup在每一个Reduce中会调用一次,只能设置一个Reduce,无法是实现负载均衡。

问题,如果要在reduce中输出两种文件,一种是标志,另一种是正常业务数据,实现方案有三种:

(1)设置一个reduce,在reduce中将数据封装到一个集合中,在cleanup中将数据写入到hdfs中,但是如果数据量巨大,一个reduce无法充分利用资源,实现负载均衡,但是如果数据量较小,可以使用

(2)设置多文件输出,使用MultipleOutputs类

具体见代码:

private MultipleOutputs mos; 

@Override 
protected void setup(Context context) 
throws IOException, InterruptedException { 
  mos=new MultipleOutputs(context);
} 
@Override 
protected void reduce(Text key, Iterable<Text> values, Context context) 
throws IOException, InterruptedException { 

String key1=key.toString(); 
for(Text t:values){ 
   if(key1.equals("a")){ 
   mos.write("a", key,t); 
   } else if(key1.equals("b")){ 
   mos.write("b", key,t);    
   } else if(key1.equals("c")){ 
   mos.write("c", key,t); 
   
   } 
 } 
} 
@Override 
protected void cleanup( 
Context context) 
throws IOException, InterruptedException { 
mos.close();
} 
main方法中配置
<pre name="code" class="java">MultipleOutputs.addNamedOutput(job, "a", TextOutputFormat.class, Text.class, Text.class);
MultipleOutputs.addNamedOutput(job, "b", TextOutputFormat.class, Text.class, Text.class);
MultipleOutputs.addNamedOutput(job, "c", TextOutputFormat.class, Text.class, Text.class);


结果文件为  a-r-0000,b-r-0000,c-r-0000,part-r-0000
(3)第三种方案是自己实现多文件输出

详见http://blog.csdn.net/qingmu0803/article/details/39665407

hadoop多文件输出