首页 > 代码库 > kafka-->storm-->mongodb
kafka-->storm-->mongodb
目的:
通过Spout发射kafka的数据,到bolt统计每一个单词的个数,将这些记录更新到mongodb中。
Spout的nextTuple方法会一直处于一个while循环这中,每一条数据发送给bolt后,bolt都会调用一次execute方法。
spout用于发射数据,bolt用于对数据进行处理。
MongoUtil:mongo工具类
package storm;
import com.mongodb.BasicDBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;
public class MongoUtil {
private MongoUtil(){}
private static MongoClient mongo;
private static DB db;
private static DBCollection collection;
static{
mongo = new MongoClient("192.168.170.185",27017);
db = mongo.getDB("mySpout");
collection = db.getCollection("myBolt");
}
public static Long getCount(){
return collection.count(new BasicDBObject("_id",1L));
}
public static void insert(String substring){
DBObject obj = new BasicDBObject();
obj.put("_id", 1);
obj.put("bolt", substring);
collection.insert(obj);
}
public static void update(String substring){
DBObject obj = new BasicDBObject();
obj.put("_id", 1);
DBObject obj2 = collection.findOne(obj);
obj2.put("bolt", substring);
collection.update(obj, obj2);
}
}
SentenceSpout:发射数据的spout,从kafka读取数据。
package storm;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import org.apache.kafka.common.utils.Utils;
import org.apache.storm.Constants;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
import kafka.KafkaConsumer;
import kafka.KafkaProducer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.serializer.StringDecoder;
import kafka.utils.VerifiableProperties;
public class SentenceSpout extends BaseRichSpout{
private SpoutOutputCollector collector;
private int index = 0;
private ConsumerConnector consumer;
private Map conf;
@Override
public void open(Map map, TopologyContext context, SpoutOutputCollector collector) {//尽量将初始化写在open方法中,否则可能会报错。
this.conf = map;
this.collector = collector;
Properties props = new Properties();
// zookeeper 配置
props.put("zookeeper.connect", "192.168.170.185:2181");
// 消费者所在组
props.put("group.id", "testgroup");
// zk连接超时
props.put("zookeeper.session.timeout.ms", "4000");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
props.put("auto.offset.reset", "smallest");
// 序列化类
props.put("serializer.class", "kafka.serializer.StringEncoder");
ConsumerConfig config = new ConsumerConfig(props);
this.consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config);
}
@Override
public void nextTuple() {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("helloworld", new Integer(1));
StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties());
StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties());
Map<String, List<KafkaStream<String, String>>> consumerMap =
consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder);
KafkaStream<String, String> stream = consumerMap.get("helloworld").get(0);
ConsumerIterator<String, String> it = stream.iterator();
int messageCount = 0;
while (it.hasNext()){
this.collector.emit(new Values(it.next().message().toString()));
}
// index = (index+1>=sentences.length)?0:index+1;
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("sentence"));
}
}
SplitSentenceBolt:切割单词bolt
package storm;
import java.util.Map;
import org.apache.storm.Constants;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
public class SplitSentenceBolt extends BaseRichBolt{
private OutputCollector collector;
private Map stormConf;
@Override
public void prepare(Map map, TopologyContext context, OutputCollector collector) {
this.stormConf = map;
this.collector = collector;
}
@Override
public void execute(Tuple tuple) {
String str = tuple.getStringByField("sentence");
String[] split = str.split(" ");
for(String word : split){
this.collector.emit(new Values(word));
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
WordCountBolt:计数的bolt
package storm;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.HashMap;
import java.util.Map;
import org.apache.storm.Config;
import org.apache.storm.Constants;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
public class WordCountBolt extends BaseRichBolt{
private Map boltconf;
private OutputCollector collector;
private HashMap<String,Long> counts = null;
@Override
public void prepare(Map map, TopologyContext context, OutputCollector collector) {
this.boltconf = map;
this.collector=collector;
this.counts = new HashMap<String,Long>();
}
@Override
public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
this.counts.put(word, this.counts.containsKey(word)?this.counts.get(word)+1:1);
this.collector.emit(new Values(word,counts.get(word)));
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word","count"));
}
}
ReportBolt:打印记录结果,并将结果插入mongodb中bolt
package storm;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.storm.Config;
import org.apache.storm.Constants;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Tuple;
import com.mongodb.BasicDBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;
public class ReportBolt extends BaseRichBolt{
private HashMap<String,Long> counts = null;
private Map boltconf;
private StringBuffer buf = null;
@Override
public void prepare(Map arg0, TopologyContext arg1, OutputCollector arg2) {
this.boltconf = arg0;
this.counts=new HashMap<String,Long>();
this.buf = new StringBuffer();
}
@Override
public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
Long counts = tuple.getLongByField("count");
this.counts.put(word, counts);
System.out.println("------统计结果------");
List<String> keys = new ArrayList<String>();
keys.addAll(this.counts.keySet());
buf.append("{");
for(String key : keys){
buf.append(key+":"+this.counts.get(key)).append(",");
System.out.println(key + " : " +this.counts.get(key));
}
System.out.println("------------------");
buf.append("}");
String substring = buf.delete(buf.length()-2, buf.length()-1).toString();
long count = MongoUtil.getCount();
if(count<=0){
MongoUtil.insert(substring);
}else{
MongoUtil.update(substring);
}
buf = buf.delete(0, buf.length());
}
@Override
public void declareOutputFields(OutputFieldsDeclarer arg0) {
// TODO Auto-generated method stub
}
/* @Override
public Map<String, Object> getComponentConfiguration() {
HashMap<String, Object> hashMap = new HashMap<String, Object>();
hashMap.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, 10);
return hashMap;
}*/
}
WordCountTopology: topology,storm零件的组装
package storm;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;
public class WordCountTopology {
private static final String SENTENCE_SPOUT_ID = "sentence-spout";
private static final String SPLIT_BOLT_ID = "split-bolt";
private static final String COUNT_BOLT_ID = "count-bolt";
private static final String REPORT_BOLT_ID = "report-bolt";
private static final String TOPOLOGY_NAME = "word-count-topology";
public static void main(String[] args) throws Exception {
//--实例化Spout和Bolt
SentenceSpout spout = new SentenceSpout();
SplitSentenceBolt splitBolt = new SplitSentenceBolt();
WordCountBolt countBolt = new WordCountBolt();
ReportBolt reportBolt = new ReportBolt();
//--创建TopologyBuilder类实例
TopologyBuilder builder = new TopologyBuilder();
//--注册SentenceSpout
builder.setSpout(SENTENCE_SPOUT_ID, spout);
//--注册SplitSentenceBolt,订阅SentenceSpout发送的tuple
//此处使用了shuffleGrouping方法,此方法指定所有的tuple随机均匀的分发给SplitSentenceBolt的实例。
builder.setBolt(SPLIT_BOLT_ID, splitBolt).shuffleGrouping(SENTENCE_SPOUT_ID);
//--注册WordCountBolt,,订阅SplitSentenceBolt发送的tuple
//此处使用了filedsGrouping方法,此方法可以将指定名称的tuple路由到同一个WordCountBolt实例中
builder.setBolt(COUNT_BOLT_ID, countBolt).fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));
//--注册ReprotBolt,订阅WordCountBolt发送的tuple
//此处使用了globalGrouping方法,表示所有的tuple都路由到唯一的ReprotBolt实例中
builder.setBolt(REPORT_BOLT_ID, reportBolt).globalGrouping(COUNT_BOLT_ID);
//--创建配置对象
Config conf = new Config();
//--创建代表集群的对象,LocalCluster表示在本地开发环境来模拟一个完整的Storm集群
//本地模式是开发和测试的简单方式,省去了在分布式集群中反复部署的开销
//另外可以执行断点调试非常的便捷
LocalCluster cluster = new LocalCluster();
//--提交Topology给集群运行
cluster.submitTopology(TOPOLOGY_NAME, conf, builder.createTopology());
//--运行10秒钟后杀死Topology关闭集群
Thread.sleep(300000000);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown();
}
}
kafka-->storm-->mongodb