首页 > 代码库 > vc维的解释
vc维的解释
在做svm的时候我们碰到了结构风险最小化的问题,结构风险等于经验风险+vc置信范围,其中的vc置信范围又跟样本的数量和模型的vc维有关,所以我们看一下什么是vc维
首先看一下vc维的定义:对一个指标函数集,如果存在H个样本能够被函数集中的函数按所有可能的2的H次方种形式分开,则称函数集能够把H个样本打散;函数集的VC维就是它能打散的最大样本数目H
例如有个样本,一个函数能够将这h个样本打散,打散指的是样本最后被分类的情况有2^h种可能,则这个函数能够打散的最大样本数就是vc维
如下图所示,一条直线能够将三个点打散成2^3种结果,但是不能将4个点打散成2^4种结果,所以vc维是3
参考
http://blog.csdn.net/mingspy/article/details/8858270
vc维的解释
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。