首页 > 代码库 > 重画GoogleClusterTrace数据

重画GoogleClusterTrace数据

由于项目计划书写作需要,重画了Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, Joseph L. Hellerstein,

Dynamic Heterogeneity-Aware Resource Provisioning in the Cloud. IEEE TRANSACTIONS ON CLOUD

COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014.中的TaskEvent分布统计图。原图更跟重画图如下:

原图:

重画图:

数据来源:

介绍:

https://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

所有文件列表及校验和:

https://commondatastorage.googleapis.com/clusterdata-2011-1/SHA256SUM

格式说明:

https://commondatastorage.googleapis.com/clusterdata-2011-1/schema.csv

数据文件示例连接:

https://commondatastorage.googleapis.com/clusterdata-2011-1/job_events/part-00017-of-00500.csv.gz

 

重画的步骤如下。

1 由于数据存放在https://commondatastorage.googleapis.com/clusterdata-2011-1/

需要FQ才能访问,故所有数据处理都是在墙外的位于东亚的azure服务器完成的。故首先建一个云服务器,并完成环境配置。

(主要是装个python)

2 下载数据文件(数据总量较大,1.51G)

import urllib2url = https://commondatastorage.googleapis.com/clusterdata-2011-1/f = open(C:\\SHA256SUM)l = f.readlines()f.close()for i in l:    if i.count(task_events)>0:        fileAddr = i.split()[1][1:]        fileName = fileAddr.split(/)[1]        print downloading, fileName        data = urllib2.urlopen(url+fileAddr).read()        print saving, fileName        fileDown = open(C:\\task_events\\+fileName, wb)        fileDown.write(data)        fileDown.close()

3 生成要处理的文件名

f = open(C:\\SHA256SUM)l = f.readlines()f.close()fName = open(C:\\task_events_file_name.txt, w)for i in l:    if i.count(task_events)>0:        fileAddr = i.split()[1][1:]        fileName = fileAddr.split(/)[1]        fName.write(fileName+\r\n)fName.close()

4 统计

import gzipfName = open(C:\\task_events_file_name.txt)fileNames = fName.readlines()fName.close()cntMapGratis = {}cntMapProduction = {}cntMapOthers = {}#fileNames = [‘part-00000-of-00500.csv.gz‘]for l in fileNames:    print now at: + l.strip()    f = gzip.open(C:\\task_events\\+l.strip())    for log in f.readlines():        log = log.split(,)        if log[9]!=‘‘ and log[10]!=‘‘:            index = log[9]+ +log[10]            priority = int(log[8])            if priority <= 1: #Gratis Task                cntMap = cntMapGratis            elif priority >= 9 and priority <= 11:                cntMap = cntMapProduction            else:                cntMap = cntMapOthers            if not index in cntMap:                cntMap[index]=1            else:                cntMap[index]+=1    f.close()fReasult = open(C:\\CPUandMEMuseGratis.txt, w)for i in cntMapGratis:    fReasult.write(i+ +str(cntMapGratis[i])+"\r\n")fReasult.close()fReasult = open(C:\\CPUandMEMuseProduction.txt, w)for i in cntMapProduction:    fReasult.write(i+ +str(cntMapProduction[i])+"\r\n")fReasult.close()fReasult = open(C:\\CPUandMEMuseOthers.txt, w)for i in cntMapOthers:    fReasult.write(i+ +str(cntMapOthers[i])+"\r\n")fReasult.close()

5 使用matlab绘制

clear all
close all

%load(‘D:\\CPUandMEMuseGratis.txt‘)
%load(‘D:\\CPUandMEMuseProduction.txt‘)
load(‘D:\\CPUandMEMuseOther.txt‘)

%CPUandMEMuse = CPUandMEMuseGratis;
%CPUandMEMuse = CPUandMEMuseProduction;
CPUandMEMuse = CPUandMEMuseOther;
x=CPUandMEMuse(:,1);
y= CPUandMEMuse(:,2);
s = CPUandMEMuse(:,3)/10000000;
s = log(s);

%max_r = 0.002; %for production and gratis
max_r = 0.001; %for other only
s = s/max(s)*max_r;

for i=1:size(x)
if x(i) == 0 || y(i) == 0
s(i)=0;
end
end

t= 0:pi/10:2*pi;
figure();
grid on
for i=1:size(x)
if x(i)~=0 && y(i)~=0
pb=patch((s(i)*sin(t)*0.5+ x(i)),(s(i)*cos(t)+y(i)),‘b‘,‘edgecolor‘,‘k‘);
alpha(pb,.3);
end
end
axis([0 0.5 0 1]);
xlabel(‘CPU size‘);
ylabel(‘Memory size‘);
set(gca,‘FontSize‘,25);
set(get(gca,‘XLabel‘),‘FontSize‘,30);
set(get(gca,‘YLabel‘),‘FontSize‘,30);

%saveas(gcf,‘D:\\CPUandMEMuseGratis.jpg‘)
%saveas(gcf,‘D:\\CPUandMEMuseProduction.jpg‘)
saveas(gcf,‘D:\\CPUandMEMDemandOther.jpg‘)

 

附注:

1. Task通过优先级划分类别的

0-1 是Gratis

9-11 是Production

其他(2-8) 是Other

2. 画图的时候,圆的半径表示数量的对数(log) 

重画GoogleClusterTrace数据