首页 > 代码库 > 最小优先队列实现赫夫曼树 贪心策略
最小优先队列实现赫夫曼树 贪心策略
使用 最小优先队列存放要编码的key,和合并之后内部节点,注意最小优先队列,获得最小值时会把最小是删掉,下面是java实现。
package Algorithms; class MinQueue<T extends Comparable<? super T>>{ int heapSize; T[] heap; int capacity; public MinQueue(int capaticty) { this.capacity=capaticty; heapSize=0; //因为泛型擦除,泛型不能实例化,只能创建Object,然后再强制类型转换为数组 //这里不能使用new Object 因为没有comparable,要使用直接父类comparable heap=(T[])new Comparable[capaticty]; } /** * 最小优先队列的维护 */ public void heapfy(int i) { if(i>=heapSize&&i<0) { System.out.println("要维护的节点错误"); return ; } int left=2*i+1; int right=2*i+2; int min=i; //寻找i与其两个孩子的最小值 if(left<heapSize&&heap[left].compareTo(heap[min])==-1) min=left; if(right<heapSize&&heap[right].compareTo(heap[min])==-1) min=right; if(min!=i) { T temp=heap[min]; heap[min]=heap[i]; heap[i]=temp; heapfy(min); } } /** * 建立最小优先队列 */ public void insert(T ele) { if(heapSize>=capacity) { System.out.println("最小优先队列已满!"); return ; } heap[heapSize]=ele; heapSize++; int child=heapSize-1; int parent=(heapSize/2)-1; while(parent>=0&&heap[parent].compareTo(heap[child])>1) { T temp=heap[parent]; heap[parent]=heap[child]; heap[child]=temp; child=parent; parent=(child+1)/2-1; } } public T extractMin() { if(heapSize<=0) { System.out.println("没有元素"); return null; } T min=heap[0]; heapSize--; heap[0]=heap[heapSize]; heap[heapSize]=min; heapfy(0); return min; } } public class HumanCode { public static class Node implements Comparable<Node>{ public int freq;//字符出现的频率 public char key; public Node left; public Node right; public Node (int freq,char key,Node left,Node right) { this.freq=freq; this.key=key; this.left=left; this.right=right; } @Override public int compareTo(Node o) { if(this.freq>o.freq) return 1; else if(this.freq==o.freq) return 0; else return -1; } } /** * @param q * 构建哈夫曼树 具有n个关键字要进行n-1次合并 */ public Node huffman(MinQueue<Node> q) { int n=q.heapSize; for(int i=1;i<n;i++) { Node min1=q.extractMin(); Node min2=q.extractMin(); int freq1=min1.freq; int freq2=min2.freq; int freq=freq1+freq2; Node node=new HumanCode.Node(freq, ' ', min1, min2); q.insert(node); } return q.extractMin(); } public void huffmanAccess(Node node,String a) { if(node!=null) { if(node.key!=' ') System.out.print(a+" "); huffmanAccess(node.left,a+"0"); huffmanAccess(node.right,a+"1"); } } public static void main(String []args) { HumanCode hu=new HumanCode(); MinQueue<Node>q=new MinQueue<Node>(6); Node node1=new HumanCode.Node(5, 'f', null, null); Node node2=new HumanCode.Node(9, 'e', null, null); Node node3=new HumanCode.Node(12, 'c', null, null); Node node4=new HumanCode.Node(13, 'b', null, null); Node node5=new HumanCode.Node(16, 'd', null, null); Node node6=new HumanCode.Node(45, 'a', null, null); q.insert(node1); q.insert(node2); q.insert(node3); q.insert(node4); q.insert(node5); q.insert(node6); Node node=hu.huffman(q); hu.huffmanAccess(node,""); } }
最小优先队列实现赫夫曼树 贪心策略
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。