首页 > 代码库 > 以8位并行数据为例确定crc-32的一般矩阵表示形式
以8位并行数据为例确定crc-32的一般矩阵表示形式
在进行数据校验时我们会使用到crc(循环冗余校验)校验的方式,例如在以太网通信网络中会对信息进行编码和校验,生成码采用的就是33位的
crc-32:x32+x26+x23+...+x2+x+1; (104c11db7)。循环冗余校验码的计算是模2的除法运算。模2指的是运算的时候不进行借位和进位的操作。可以用下面的例子来说明。假如信息码为11011,生成码为101(2+1)则校验码的计算过程是
先把信息码左移两位(二进制),得1101100。
然后通过异或操作
1101100
101
---------
111100
101
---------
010100
101
--------
00000
这个计算结果为00
假如信信息码为1100时,余码就是01
110000
101
----
010000
101
--------
00100
101
------
001
所以根据上面的运算可以得出任何信息码的余码。
一般使用线性反馈移位寄存器LFSR或(LFSR2)来进行物理实现。这两种方式结构如下:
本篇文章我使用的是LFSR2结构,假如使用LFSR结构需要在先输入n位的0(n是冗余码的位数)。为简单起见推导过程使用的4位信息码,8位的冗余码,生成式为P={p7,p6,p5,p4,p3,p2,p1,p0},初始余码为X0={x0(7),x0(6),x0(5),x0(4),x0(3),x0(2),x0(1),x0(0)}。输入数据D={d3,d2,d1,d0};
则当输入一位d3时表达式;+表示异或
x1(7)=x0(6)+p7(x0(7)+d3)=p7x0(7)+x0(6)+p7d3;
x1(6)=x0(5)+p6(x0(7)+d3)=p6x0(7)+x0(5)+p6d3;
x1(5)=x0(4)+p5(x0(7)+d3)=p5x0(7)+x0(4)+p5d3;
x1(4)=x0(3)+p4(x0(7)+d3)=p4x0(7)+x0(3)+p4d3;
x1(3)=x0(2)+p3(x0(7)+d3)=p3x0(7)+x0(2)+p3d3;
x1(2)=x0(1)+p2(x0(7)+d3)=p2x0(7)+x0(1)+p2d3;
x1(1)=x0(0)+p1(x0(7)+d3)=p1x0(7)+x0(0)+p1d3;
x1(0)=p0(x0(7)+d3)=p0x0(7)+p0d3;
X1‘=FX0‘+P‘d3;其中
F={ p7,1,0,0,0,0,0,0
p6,0,1,0,0,0,0,0
p5,0,0,1,0,0,0,0
p4,0,0,0,1,0,0,0
p3,0,0,0,0,1,0,0
p2,0,0,0,0,0,1,0
p1,0,0,0,0,0,0,1
p0,0,0,0,0,0,0,0}
同样可以得X2‘=FX1‘+P‘d2;
X3‘=FX2‘+P‘d1;
X4‘=FX3‘+P‘d0;
进而得X4‘=F*F*F*F*X0+{F*F*F*P‘,F*F*P‘,F*P‘,P‘}*D‘;
所以输入四位数据时最后余码的状态与初始的状态有关。
对于任意的n位并行信息码Xn=Fn*X0+{F(n-1)p‘.....p‘}D‘。
下面是用表格对8位信息码,32位余码,生成码为0x04c11db7;
参考Excel表格。最后的结果为(左边为低位x0~x31)
以下为在verilog中的验证代码:
1 module arc_8(input clk,output reg [31:0] crc); 2 reg [4:0]count=0; 3 reg [31:0] fcs_temp,datatemp2; 4 reg [31:0] R ; 5 reg[2:0] step=0; 6 reg [7:0]data_count=0; 7 reg [2:0] num=0; 8 reg on=1; 9 reg [7:0] datatemp; 10 always@(posedge clk) 11 begin 12 case(step) 13 0:begin if(on) step<=1;else step<=0;R<=0;end 14 1:begin 15 if(data_count<126)begin // 主要是第一个循环0x60e84e34,验证的结果应该为0x7db9cbc8 16 case(num) 17 0:begin datatemp<=8‘h60;num<=1;on<=1;end 18 1:begin datatemp <=8‘he8;num<=2;end 19 2:begin datatemp<=8‘h4e;num<=3;end 20 3:begin datatemp<=8‘h34;num<=0;data_count<=data_count+1;end 21 endcase 22 step<=3;end 23 else begin on<=0; step<=6;end end 24 3:begin step<=4; 25 //00100000100000000000000000000000 26 fcs_temp[31]<=R[23]^R[29]; 27 //10010000010000000000000000000000 28 fcs_temp[30]<=R[22]^ R[28]^R[31]; 29 //11001000001000000000000000000000 30 fcs_temp[29]<=R[21]^ R[27]^R[30]^R[31]; 31 //01100100000100000000000000000000 32 fcs_temp[28]<=R[20]^R[26]^R[29]^R[30]; 33 //10110010000010000000000000000000 34 fcs_temp[27]<=R[19]^R[25]^R[28]^R[29]^R[31]; 35 //01011001000001000000000000000000 36 fcs_temp[26]<= R[18]^R[24]^R[27]^ R[28]^ R[30]; 37 //00001100000000100000000000000000 38 fcs_temp[25]<=R[17]^R[26]^R[27]; 39 //10000110000000010000000000000000 40 fcs_temp[24]<=R[16]^R[25]^R[26]^R[31]; 41 //01000011000000001000000000000000 42 fcs_temp[23]<=R[15]^R[24]^R[25]^R[30]; 43 //00000001000000000100000000000000 44 fcs_temp[22]<=R[14]^R[24]; 45 //00100000000000000010000000000000 46 fcs_temp[21]<=R[13]^R[29]; 47 //00010000000000000001000000000000 48 fcs_temp[20]<=R[12]^ R[28]; 49 //10001000000000000000100000000000 50 fcs_temp[19]<=R[11]^R[27]^ R[31]; 51 //11000100000000000000010000000000 52 fcs_temp[18]<=R[10]^ R[26]^R[30]^R[31]; 53 //01100010000000000000001000000000 54 fcs_temp[17]<=R[ 9]^R[25]^R[29]^R[30]; 55 //00110001000000000000000100000000 56 fcs_temp[16]<=R[ 8]^R[24]^R[28]^R[29]; 57 //10111000000000000000000010000000 58 fcs_temp[15]<=R[ 7]^R[27]^R[28]^R[29]^R[31]; 59 //11011100000000000000000001000000 60 fcs_temp[14]<=R[ 6]^R[26]^R[27]^R[28]^R[30]^R[31]; 61 //11101110000000000000000000100000 62 fcs_temp[13]<=R[ 5]^R[25]^R[26]^R[27]^ R[29]^ R[30]^ R[31]; 63 //01110111000000000000000000010000 64 fcs_temp[12]<=R[ 4]^R[24]^R[25]^R[26]^R[28]^R[29]^R[30]; 65 //00011011000000000000000000001000 66 fcs_temp[11]<=R[ 3]^R[24]^R[25]^R[27]^R[28]; 67 //00101101000000000000000000000100 68 fcs_temp[10]<=R[ 2]^R[24]^R[26]^R[27]^R[29]; 69 //00110110000000000000000000000010 70 fcs_temp[9]<=R[ 1]^R[25]^R[26]^R[28]^R[29]; 71 //00011011000000000000000000000001 72 fcs_temp[8]<=R[ 0]^R[24]^R[25]^R[27]^R[28]; 73 //10101101000000000000000000000000 74 fcs_temp[7]<=R[24]^R[26]^R[27]^R[29]^R[31]; 75 //11110110000000000000000000000000 76 fcs_temp[6]<=R[25]^R[26]^R[28]^R[29]^R[30]^R[31]; 77 //11111011000000000000000000000000 78 fcs_temp[5]<=R[24]^R[25]^R[27]^R[28]^R[29]^R[30]^R[31]; 79 //01011101000000000000000000000000 80 fcs_temp[4]<=R[24]^R[26]^R[27]^R[28]^R[30]; 81 //10001110000000000000000000000000 82 fcs_temp[3]<=R[25]^R[26]^R[27]^R[31]; 83 //11000111000000000000000000000000 84 fcs_temp[2]<=R[24]^R[25]^R[26]^R[30]^R[31]; 85 //11000011000000000000000000000000 86 fcs_temp[1]<=R[24]^R[25]^R[30]^R[31]; 87 //01000001000000000000000000000000 88 fcs_temp[0]<=R[24]^R[30];end 89 90 4:begin step<=5; 91 datatemp2[31]<=datatemp[ 5]; 92 datatemp2[30]<=datatemp[ 4]^datatemp[ 7]; 93 datatemp2[29]<=datatemp[ 3]^datatemp[ 6]^datatemp[ 7]; 94 datatemp2[28]<=datatemp[ 2]^datatemp[ 5]^datatemp[ 6]; 95 datatemp2[27]<=datatemp[ 1]^datatemp[ 4]^datatemp[ 5]^datatemp[ 7]; 96 datatemp2[26]<=datatemp[ 0]^datatemp[ 3]^datatemp[ 4]^datatemp[ 6]; 97 datatemp2[25]<=datatemp[ 2]^datatemp[ 3]; 98 datatemp2[24]<=datatemp[ 1]^datatemp[ 2]^datatemp[ 7]; 99 datatemp2[23]<=datatemp[ 0]^datatemp[ 1]^datatemp[ 6];100 datatemp2[22]<=datatemp[ 0];101 datatemp2[21]<=datatemp[ 5];102 datatemp2[20]<=datatemp[ 4];103 datatemp2[19]<=datatemp[ 3]^datatemp[ 7];104 datatemp2[18]<=datatemp[ 2]^datatemp[ 6]^datatemp[ 7];105 datatemp2[17]<=datatemp[ 1]^datatemp[ 5]^datatemp[ 6];106 datatemp2[16]<=datatemp[ 0]^datatemp[ 4]^datatemp[ 5];107 datatemp2[15]<=datatemp[ 3]^datatemp[ 4]^datatemp[ 5]^datatemp[ 7];108 datatemp2[14]<=datatemp[ 2]^datatemp[ 3]^datatemp[ 4]^datatemp[ 6]^datatemp[ 7];109 datatemp2[13]<=datatemp[ 1]^datatemp[ 2]^datatemp[ 3]^datatemp[ 5]^datatemp[ 6]^datatemp[ 7];110 datatemp2[12]<=datatemp[ 0]^datatemp[ 1]^datatemp[ 2]^datatemp[ 4]^datatemp[ 5]^datatemp[ 6];111 datatemp2[11]<=datatemp[ 0]^datatemp[ 1]^datatemp[ 3]^datatemp[ 4];112 datatemp2[10]<=datatemp[ 0]^datatemp[ 2]^datatemp[ 3]^datatemp[ 5];113 datatemp2[9]<=datatemp[ 1]^datatemp[ 2]^datatemp[ 4]^datatemp[ 5];114 datatemp2[8]<=datatemp[ 0]^datatemp[ 1]^datatemp[ 3]^datatemp[ 4];115 datatemp2[7]<=datatemp[ 0]^datatemp[ 2]^datatemp[ 3]^datatemp[ 5]^datatemp[ 7];116 datatemp2[6]<=datatemp[ 1]^datatemp[ 2]^datatemp[ 4]^datatemp[ 5]^datatemp[ 6]^datatemp[ 7];117 datatemp2[5]<=datatemp[ 0]^datatemp[ 1]^datatemp[ 3]^datatemp[ 4]^datatemp[ 5]^datatemp[ 6]^datatemp[ 7];118 datatemp2[4]<=datatemp[ 0]^datatemp[ 2]^datatemp[ 3]^datatemp[ 4]^datatemp[ 6];119 datatemp2[3]<=datatemp[ 1]^datatemp[ 2]^datatemp[ 3]^datatemp[ 7];120 datatemp2[2]<=datatemp[ 0]^datatemp[ 1]^datatemp[ 2]^datatemp[ 6]^datatemp[ 7];121 datatemp2[1]<=datatemp[ 0]^datatemp[ 1]^datatemp[ 6]^datatemp[ 7];122 datatemp2[0]<=datatemp[ 0]^datatemp[ 6];end 123 124 5:begin R<=fcs_temp^datatemp2; step<=1;end 125 6:begin step<=0;crc<=~R;end 126 endcase127 end128 endmodule
modelsim 中显示结果
以8位并行数据为例确定crc-32的一般矩阵表示形式