首页 > 代码库 > AlexNet详解
AlexNet详解
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军。要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet,这是CNN在图像分类上的经典模型(DL火起来之后)。
在DL开源实现caffe的model样例中,它也给出了alexnet的复现,具体网络配置文件如下https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt:
接下来本文将一步步对该网络配置结构中各个层进行详细的解读(训练阶段):
1. conv1阶段DFD(data flow diagram):
2. conv2阶段DFD(data flow diagram):
3. conv3阶段DFD(data flow diagram):
4. conv4阶段DFD(data flow diagram):
5. conv5阶段DFD(data flow diagram):
6. fc6阶段DFD(data flow diagram):
7. fc7阶段DFD(data flow diagram):
8. fc8阶段DFD(data flow diagram):
各种layer的operation更多解释可以参考http://caffe.berkeleyvision.org/tutorial/layers.html
从计算该模型的数据流过程中,该模型参数大概5kw+。
AlexNet详解
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。