首页 > 代码库 > 插值和空间分析(二)_变异函数分析(R语言)
插值和空间分析(二)_变异函数分析(R语言)
方法1、散点图
hscat(log(zinc)~1, meuse, (0:9)*100)
方法2、变异函数云图
library(gstat)cld <- variogram(log(zinc) ~ 1, meuse, cloud = TRUE)svgm <- variogram(log(zinc) ~ 1, meuse)d <- data.frame(gamma = c(cld$gamma, svgm$gamma), dist = c(cld$dist, svgm$dist), id = c(rep("cloud", nrow(cld)), rep("sample variogram", nrow(svgm))) )xyplot(gamma ~ dist | id, d, scales = list(y = list(relation = "free", #ylim = list(NULL, c(-.005,0.7)))), limits = list(NULL, c(-.005,0.7)))), layout = c(1, 2), as.table = TRUE, panel = function(x,y, ...) { if (panel.number() == 2) ltext(x+10, y, svgm$np, adj = c(0,0.5)) #$ panel.xyplot(x,y,...) }, xlim = c(0, 1590), cex = .5, pch = 3)
plot(variogram(log(zinc) ~ 1, meuse)) // 对每一个距离去平均
sel <- plot(variogram(zinc ~ 1, meuse, cloud = TRUE), digitize = TRUE)plot(sel, meuse)
v <- variogram(log(zinc) ~ 1, meuse)print(xyplot(gamma ~ dist, v, pch = 3, type = ‘b‘, lwd = 2, col = ‘darkblue‘, panel = function(x, y, ...) { for (i in 1:100) { meuse$random = sample(meuse$zinc) v = variogram(log(random) ~ 1, meuse) llines(v$dist, v$gamma, col = ‘grey‘) } panel.xyplot(x, y, ...) }, ylim = c(0, 0.75), xlab = ‘distance‘, ylab = ‘semivariance‘))
插值和空间分析(二)_变异函数分析(R语言)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。