首页 > 代码库 > 二分细节处理(没有任何人去关注,但是确实让我很伤脑,处理不好会死人吧!)
二分细节处理(没有任何人去关注,但是确实让我很伤脑,处理不好会死人吧!)
以下内容大部分为转载
把二分查找算法写正确需要注意的地方
今天再次解决一个需要使用二分查找的问题,再一次的,我又没有一次过写对.(为什么我说"又"?)
抓狂了,似乎开始有一些"二分查找恐惧症".
为了以后能够一次将这个基本的算法写对,我决定再仔细研究一下.我之前有写过一个二分查找的算法,在这里,这一次再以这个问题为例来说明.
我今早写下的错误代码类似于下面的样子:
在这里,循环的开始处,把循环遍历的序列区间是这样的:
但是,在循环内部, 却不是这样操作的:
因此,这种错误的写法并不是在所有的情况下都会出错,有时还是可以找到正确的结果的.
这是一种典型的二分查找算法写错的情况,循环体是左闭右开区间,而循环体内部却是采用左闭右闭区间的算法进行操作.
下面给出的两种正确的算法,算法search是左闭右闭区间算法,而算法search2是左闭右开区间算法,可以对比一下差异.
下面再给出另一种典型的错误的二分查找算法,当查找的元素不在序列内时,它可能造成程序的死循环.
从循环条件来看,这个算法的操作区间是左闭右闭区间的,因此当array[middle] > v时,v如果存在的话应该在[left, middle- 1]中,因此此时right应该是middle - 1,而不是middle;类似的,当array[middle] < v时,下一次操作的区间应该是[middle + 1, right]中.而当元素不存在这个序列中时,算法在一个错误的区间中循环,但是又不能终止循环,于是就造成了死循环.
因此,要将二分查找算法写对,其实很多人都大概知道思想,具体到编码的时候,就会被这些看似微小的地方搞糊涂.因此,需要注意这一点:
算法所操作的区间,是左闭右开区间,还是左闭右闭区间,这个区间,需要在循环初始化,循环体是否终止的判断中,以及每次修改left,right区间值这三个地方保持一致,否则就可能出错.
抓狂了,似乎开始有一些"二分查找恐惧症".
为了以后能够一次将这个基本的算法写对,我决定再仔细研究一下.我之前有写过一个二分查找的算法,在这里,这一次再以这个问题为例来说明.
我今早写下的错误代码类似于下面的样子:
#include <stdio.h>
int search(int array[], int n, int v)
{
int left, right, middle;
left = 0, right = n;
while (left < right)
{
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle - 1;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
}
return -1;
}
int main()
{
int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 13, 19};
int m = search(array, sizeof(array)/sizeof(array[0]), 1);
printf("m = %d\n", m);
return 0;
}
实际上,如果使用测试用例来测试,这个算法并不是在所有情况下都会出错的,还是有时可以得到正确的结果的.但是,你能看出来它错在哪儿吗?int search(int array[], int n, int v)
{
int left, right, middle;
left = 0, right = n;
while (left < right)
{
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle - 1;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
}
return -1;
}
int main()
{
int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 13, 19};
int m = search(array, sizeof(array)/sizeof(array[0]), 1);
printf("m = %d\n", m);
return 0;
}
在这里,循环的开始处,把循环遍历的序列区间是这样的:
left =0, right = n;
while (left < right)
{
// 循环体
}
也就是说,这是一个左闭右开的区间:[0, n).while (left < right)
{
// 循环体
}
但是,在循环内部, 却不是这样操作的:
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle - 1;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
当array[middle] > v条件满足时, 此时v如果存在的话必然在左闭右开区间[left, middle)中, 因此,当这个条件满足时, right应该为middle, 而在这里, right赋值为middle - 1了, 那么, 就有可能遗漏array[middle - 1] = v的情况.if (array[middle] > v)
{
right = middle - 1;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
因此,这种错误的写法并不是在所有的情况下都会出错,有时还是可以找到正确的结果的.
这是一种典型的二分查找算法写错的情况,循环体是左闭右开区间,而循环体内部却是采用左闭右闭区间的算法进行操作.
下面给出的两种正确的算法,算法search是左闭右闭区间算法,而算法search2是左闭右开区间算法,可以对比一下差异.
int search(int array[], int n, int v)
{
int left, right, middle;
left = 0, right = n - 1;
while (left <= right)
{
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle - 1;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
}
return -1;
}
int search2(int array[], int n, int v)
{
int left, right, middle;
left = 0, right = n;
while (left < right)
{
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
}
return -1;
}
{
int left, right, middle;
left = 0, right = n - 1;
while (left <= right)
{
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle - 1;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
}
return -1;
}
int search2(int array[], int n, int v)
{
int left, right, middle;
left = 0, right = n;
while (left < right)
{
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
}
return -1;
}
下面再给出另一种典型的错误的二分查找算法,当查找的元素不在序列内时,它可能造成程序的死循环.
int search(int array[], int n, int v)
{
int left, right, middle;
left = 0, right = n - 1;
while (left <= right)
{
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle;
}
else if (array[middle] < v)
{
left = middle;
}
else
{
return middle;
}
}
return -1;
}
为什么会造成死循环?{
int left, right, middle;
left = 0, right = n - 1;
while (left <= right)
{
middle = (left + right) / 2;
if (array[middle] > v)
{
right = middle;
}
else if (array[middle] < v)
{
left = middle;
}
else
{
return middle;
}
}
return -1;
}
从循环条件来看,这个算法的操作区间是左闭右闭区间的,因此当array[middle] > v时,v如果存在的话应该在[left, middle- 1]中,因此此时right应该是middle - 1,而不是middle;类似的,当array[middle] < v时,下一次操作的区间应该是[middle + 1, right]中.而当元素不存在这个序列中时,算法在一个错误的区间中循环,但是又不能终止循环,于是就造成了死循环.
因此,要将二分查找算法写对,其实很多人都大概知道思想,具体到编码的时候,就会被这些看似微小的地方搞糊涂.因此,需要注意这一点:
算法所操作的区间,是左闭右开区间,还是左闭右闭区间,这个区间,需要在循环初始化,循环体是否终止的判断中,以及每次修改left,right区间值这三个地方保持一致,否则就可能出错.
二分细节处理(没有任何人去关注,但是确实让我很伤脑,处理不好会死人吧!)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。