首页 > 代码库 > 差分方程模型
差分方程模型
第七章 差分方程模型
教学目的:通过经济学中蛛网模型的实例讨论,介绍一类动态离散模型------差分方程模型的建模方法.
教学要求:1 让学生学会运用差分思想建立数学模型的基本方法,进一步熟悉数学建模的基本过程.
2使学生掌握运用解析方法或数学软件求解差分方程模型.
3帮助学生运用差分方程的平衡点及其稳定性有关理论来分析实际问题.
教学重点:1蛛网模型的图形描述,并通过建立差分方程模型对其进行理论解释.
2运用差分思想建立数学模型和求出模型解析表达式或数值解.
教学难点:1差分方程在稳定点附近有关稳定条件的实际意义.
2差分方程在稳定点附近有关稳定条件的推广.
离散状态转移模型涉及的范围很广,可以用到各种不同的数学工具.下面我们对差分方程作一简单的介绍,下一章我们将介绍马氏链模型.
§7.1 差分方程
1.1 差分方程简介
规定只取非负整数.记为变量在点的取值,则称为的一阶向前差分,简称差分,称为的二阶差分.类似地,可以定义的阶差分.
由及的差分给出的方程称为的差分方程,其中含的最高阶差分的阶数称为该差分方程的阶.差分方程也可以写成不显含差分的形式.例如,二阶差分方程也可改写成.
满足一差分方程的序列称为差分方程的解.类似于微分方程情况,若解中含有的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解.若解中不含任意常数,则称此解为满足某些初值条件的特解.
称如下形式的差分方程
(1)
为阶常系数线性差分方程,其中是常数,.其对应的齐次方程为
(2)
容易证明,若序列与均为(2)的解,则也是方程(2)的解,其中为任意常数.若是方程(2)的解,是方程(1)的解,则也是方程(1)的解.
方程(1)可用如下的代数方法求其通解:
(I)先求解对应的特征方程
(3)
(II)根据特征根的不同情况,求齐次方程(2)的通解.
(i)若特征方程(3)有个互不相同的实根,则齐次方程(2)的通解为
(为任意常数)
(ii)若是特征方程(3)的重根,通解中对应于的项为,为任意常数.
(iii)若特征方程(3)有单重复根,通解中对应它们的项为,其中为的模,为的幅角.
(iv)若是特征方程(3)的重复根,则通解对应于它们的项为
为任意常数.
(III)求非齐次方程(1)的一个特解.若为方程(2)的通解,则非齐次方程(1)的通解为.
求非齐次方程(1)的特解一般要用到常数变易法,计算较繁.对特殊形式的也可使用待定系数法.例如,当,为的次多项式时可以证明:若不是特征根,则非齐次方程(1)有形如的特解,也是的次多项式;若是重特征根,则方程(1)有形如的特解.进而可利用待定系数法求出,从而得到方程(1)的一个特解.
例1 求解两阶差分方程.
解 对应齐次方程的特征方程为,其特征根为,对应齐次方程的通解为
原方程有形如的特解.代入原方程求得,,故原方程的通解为
例2 在信道上传输仅用三个字母且长度为的词,规定有两个连续出现的词不能传输,试确定这个信道容许传输的词的个数.
解 令表示容许传输且长度为的词的个数,,通过简单计算可求得:,.当时,若词的第一个字母是或则词可按种方式完成;若词的第一个字母是,则第二个字母是或,该词剩下的部分可按种方式完成.于是,得差分方程
,
其特征方程为
特征根
,
则通解为
,
利用条件,,求得
,
在应用差分方程研究问题时,我们常常需要讨论解的稳定性.对常系数非齐次线性差分方程(1),若不论其对应齐次方程的通解中任意常数如何取值,在时总有,则称方程(1)的解是稳定的.根据通解的结构不难看出,非齐次方程(1)稳定的充要条件为其所有特征根的模均小于1.
1.2 常系数线性差分方程的变换解法
常系数线性差分方程采用解析解法比较容易,而且对其解的意义也容易理解,但采用这种解法求解常系数线性非齐次差分方程比较繁琐,通常是采用变换,将差分方程变换为代数方程去求解.
设有离散序列,,则的变换定义为
(4)
其中是复变量.显然上式右端的级数收敛域是某个圆的外部.
的反变换记作
1.2.1 几个常用离散函数的变换
(i)单位冲激函数的变换
即单位冲激函数的变换为1.
(ii)单位阶跃函数的变换
,
即
(iii)单边指数函数的变换(为不等于1的正常数)
1.2.2 变换的性质
(i)线性性质
设,,则
其中为常数.收敛域为和的公共区域.
(ii)平移性
设,则
,
,
,
例3 求齐次差分方程
,,
的解.
解 令,对差分方程取变换,得
,
,
对上式取反变换,便得差分方程的解为
.
§7.2 蛛网模型
2.1 问题提出
在自由竞争的社会中,很多领域会出现循环波动的现象.在经济领域中,可以从自由集市上某种商品的价格变化看到如下现象:在某一时期,商品的上市量大于需求,引起价格下跌,生产者觉得该商品无利可图,转而经营其它商品;一段时间之后,随着产量的下降,带来的供不应求又会导致价格上升,又有很多生产商会进行该商品的生产;随之而来的,又会出现商品过剩,价格下降.在没有外界干扰的情况下,这种现象将会反复出现.
如何从数学的角度来描述上述现象呢?
2.2 模型假设
(i)设时段商品数量为,其价格为.这里,把时间离散化为时段,一个时期相当于商品的一个生产周期.
(ii)同一时段的商品的价格取决于该时段商品的数量,把
(5)
称之为需求函数.出于对自由经济的理解,商品的数量越多,其价格就越低,故可以假设:需求函数为一个单调下降函数.
(iii)下一时段商品数量由上一个时段的商品的价格决定,把
(6)
称之为供应函数.由于价格越高可以导致产量越大,故可假设供应函数是一个单调上升的函数.
2.3 模型求解
在同一个坐标系中做出需求函数与供应函数的图形,设两条曲线相交于,则为平衡点.因为此时,,若某个,有,则可推出
,,
即商品的数量保持在,价格保持在,不妨设,下面考虑在图上的变化.如下图所示,当给定后,价格由上的
点决定,下一时段的数量由上的点决定,又可由上的点决定.依此类推,可得一系列的点,,,,图上的箭头表示求出的次序,由图知:
,
即市场经济将趋于稳定.
并不是所有的需求函数和供应函数都趋于稳定,若给定的与的图形如下图所示,得出的就不趋于,此时,市场经济趋向不稳定.
上两图中的折线形似蛛网,故把这种模型称为蛛网模型.在进行市场经济分析中,取决于消费者对某种商品的需要程度及其消费水平,取决于生产者的生产、管理等能力.
当已经知道需求函数和供应函数之后,可以根据和的性质判断平衡点的稳定性.利用结论:当较小时,点的稳定性取决于与在点的斜率,即当
(7)
时,点稳定,当
(8)
时,点不稳定.
这一结论的直观解释是:需求曲线越平,供应曲线越陡,越有利于经济稳定.
设,,在点附近取与的线性近似,由(5),(6)式得
(9)
(10)
上两式中消去,得
(11)
(11)式对均成立,有
………………………………………………
以上个式子相加,有
(12)
此为(11)式的解.
若是稳定点,则应有:
结合(12)式考虑,点稳定的条件是
(13)
即
同理,点不稳定的条件是
(14)
即
此时,.这与(7),(8)式是一致的.
2.4 模型的修正
在上面模型假设的第(iii)点中引进了供应函数,并且知道取决于管理者的生产、管理水平.如果生产者的管理水平更高一些,他们在决定该商品生产数量时,不仅考虑了前一时期的价格,而且也考虑了价格.为了简化起见,不妨设由决定,则供应函数可写成
在附近取线性近似,则有
(15)
由(9)式有
将上两式代入(15)式,整理得
,
这是一个二阶线性差分方程,其特征方程为
经计算,可得其特征根
(16)
结论:若方程的特征根均在单位圆内,即,,则为稳定点.
当时,(16)式有两个实根,因
,
则有,故此时不是稳定点.
当时,(16)式有两个共轭复根,此时
要使为稳定点,只需
与(13)式相比,与的范围扩大了.这是由于经营者经营管理水平的提高带来的结果.
§7.3 商品销售量预测
在利用差分方程建模研究实际问题时,常常需要根据统计数据并用最小二乘法来拟合出差分方程的系数.其系统稳定性讨论要用到代数方程的求根.对问题的进一步研究又常需考虑到随机因素的影响,从而用到相应的概率统计知识.
例4 某商品前5年的销售量见表.现希望根据前5年的统计数据预测第6年起该商品在各季度中的销售量.
年份 季度 | 第一年 第二年 第三年 第四年 第五年 |
1 2 3 4 | 11 12 13 15 16 16 18 20 24 25 25 26 27 30 32 12 14 15 15 17 |
从表中可以看出,该商品在前5年相同季节里的销售量呈增长趋势,而在同一年中销售量先增后减,第一季度的销售量最小而第三季度的销售量最大.预测该商品以后的销售情况,根据本例中数据的特征,可以用回归分析方法按季度建立四个经验公式,分别用来预测以后各年同一季度的销售量.例如,如认为第一季度的销售量大体按线性增长,可设销售量,由
x=[[1:5]‘,ones(5,1)];y=[11 12 13 15 16]‘;z=x\y
求得,.
根据,预测第六年起第一季度的销售量为,,….由于数据少,用回归分析效果不一定好.
如认为销售量并非逐年等量增长而是按前一年或前几年同期销售量的一定比例增长的,则可建立相应的差分方程模型.仍以第一季度为例,为简单起见不再引入上标,以表示第年第一季度的销售量,建立形式如下的差分公式:
或
等等.
上述差分方程中的系数不一定能使所有统计数据吻合,较为合理的办法是用最小二乘法求一组总体吻合较好的数据.以建立二阶差分方程为例,选取使
最小.编写Matlab程序如下:
y0=[11 12 13 15 16]‘;
y=y0(3:5);x=[y0(2:4),y0(1:3),ones(3,1)];
z=x\y
求得,,.即所求二阶差分方程为.
虽然这一差分方程恰好使所有统计数据吻合,但这只是一个巧合.根据这一方程,可迭代求出以后各年第一季度销售量的预测值,,…等.
上述为预测各年第一季度销售量而建立的二阶差分方程,虽然其系数与前5年第一季度的统计数据完全吻合,但用于预测时预测值与事实不符.凭直觉,第六年估计值明显偏高,第七年销售量预测值甚至小于第六年.稍作分析,不难看出,如分别对每一季度建立一差分方程,则根据统计数据拟合出的系数可能会相差甚大,但对同一种商品,这种差异应当是微小的,故应根据统计数据建立一个共用于各个季度的差分方程.为此,将季度编号为,令或等,利用全体数据来拟合,求拟合得最好的系数.以二阶差分方程为例,为求使得
最小,编写Matlab程序如下:
y0=[11 16 25 12 12 18 26 14 13 20 27 15 15 24 30 15 16 25 32 17]‘;
y=y0(9:20);
x=[y0(5:16),y0(1:12),ones(12,1)];
z=x\y
求得,,,故求得二阶差分方程
,
根据此式迭代,可求得第六年和第七年第一季度销售量的预测值为
,
还是较为可信的.
§7.4 遗传模型
随着人类的进化,人们为了揭示生命的奥妙,越来越重视遗传学的研究,特别是遗传特征的逐代传播,引起人们更多的注意.无论是人,还是动植物都会将本身的特征遗传给下一代,这主要是因为后代继承了双亲的基因,形成自己的基因对,基因对将确定后代所表现的特征.下面,我们来研究两种类型的遗传:常染色体遗传和链遗传.根据亲体基因遗传给后代的方式,建立模型,利用这些模型可以逐代研究一个总体基因型的分布.
4.1 常染色体遗传模型
常染色体遗传中,后代从每个亲体的基因对中各继承一个基因,形成自己的基因对,基因对也称为基因型.如果我们所考虑的遗传特征是由两个基因和控制的,那么就有三种基因对,记为.例如,金鱼草由两个遗传基因决定花的颜色,基因型是的金鱼草开红花,型的开粉红色花,而型的开白花.又如人类眼睛的颜色也是通过常染色体遗传控制的.基因型是或的人,眼睛为棕色,基因型是的人,眼睛为蓝色.这里因为和都表示了同一外部特征,我们认为基因支配基因,也可以认为基因对于来说是隐性的.当一个亲体的基因型为,而另一个亲体的基因型是时,那么后代可以从型中得到基因,从型中或得到基因,或得到基因.这样,后代基因型为或的可能性相等.下面给出双亲体基因型的所有可能的结合,以及其后代形成每种基因型的概率,如下表所示.
| 父体—母体的基因型 | ||||||
后代 基因 型 | 1 | 1/2 | 0 | 1/4 | 0 | 0 | |
0 | 1/2 | 1 | 1/2 | 1/2 | 0 | ||
0 | 0 | 0 | 1/4 | 1/2 | 1 |
例5 农场的植物园中某种植物的基因型为和.农场计划采用型的植物与每种基因型植物相结合的方案培育植物后代.那么经过若干年后,这种植物的任一代的三种基因型分布如何?
(a)假设
令.
(i)设和分别表示第代植物中,基因型为和的植物占植物总数的百分率.令为第代植物的基因型分布:
当时
表示植物基因的初始分布(即培育开始时的分布),显然有
(ii)第代的分布与第代的分布之间的关系是通过上面的表格确定的.
(b)建模
根据假设(ii),先考虑第代中的型.由于第代的型与型结合,后代全部是型;第代的型与型结合,后代是型的可能性为;而第代的型与型结合,后代不可能是型.因此当时
即
(17)
类似可推出
(18)
(19)
将(17),(18),(19)式相加,得
根据假设(i),有
对于(17),(18),(19)式,我们采用矩阵形式简记为
, (20)
其中
由(20)式递推,得
(21)
(21)式给出第代基因型的分布与初始分布的关系.
编写如下Matlab程序:
syms n a0 b0 c0
M=sym(‘[1,1/2,0;0,1/2,1;0,0,0]‘);
[p,lamda]=eig(M);
x=p*lamda.^n*p^(-1)*[a0;b0;c0];
x=simple(x)
求得
(22)
当时,,所以从(22)式得到
,,
即在极限的情况下,培育的植物都是型.
(c)模型的讨论
若在上述问题中,不选用基因型的植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三种基因型的概率如下表所示.
| 父体—母体的基因型 | |||
后代 基因 型 | 1 | 1/4 | 0 | |
0 | 1/2 | 0 | ||
0 | 1/4 | 1 |
并且,其中
编写如下Matlab程序:
syms n a0 b0 c0
M=sym(‘[1,1/4,0;0,1/2,0;0,1/4,1]‘);
[p,lamda]=eig(M);
x=p*lamda.^n*p^(-1)*[a0;b0;c0];
x=simple(x)
求得
(23)
当时,,,.因此,如果用基因型相同的植物培育后代,在极限情况下,后代仅具有基因和.
4.2 常染色体隐性病模型
现在世界上已经发现的遗传病有将近4000种.在一般情况下,遗传病与特殊的种族、部落及群体有关.例如,遗传病库利氏贫血症的患者以居住在地中海沿岸为多,镰状网性贫血症一般流行在黑人中,家族黑蒙性白痴症则流行在东欧犹太人中间.患者经常未到成年就痛苦地死去,而他们的父母则是疾病的病源.假若我们能识别这些疾病的隐性患者,并且规定两个隐性患者不能结合(因为两个隐性患者结合,他们的后代就可能成为显性患者),那么未来的儿童,虽然有可能是隐性患者,但决不会出现显性特征,不会受到疾病的折磨.现在,我们考虑在控制结合的情况下,如何确定后代中隐性患者的概率.
(a)假设
(i)常染色体遗传的正常基因记为,不正常基因记为,并以分别表示正常人,隐性患者,显性患者的基因型.
(ii)设分别表示第代中基因型为的人占总人数的百分比,记,
(iii)为使每个儿童至少有一个正常的父亲或母亲,因此隐性患者必须与正常人结合,其后代的基因型概率由下表给出:
| 父母的基因型 | ||
后代 基因型 | 1 | 1/2 | |
0 | 1/2 |
(b)建模
由假设(iii),从第代到第代基因型分布的变化取决于方程
所以,,其中
如果初始分布已知,那么第代基因型分布为,.易知
(24)
当时,,,隐性患者逐渐消失.从(24)式中可知
这说明每代隐性患者的概率是前一代隐性患者概率的.
(c)模型讨论
研究在随机结合的情况下,隐性患者的变化是很有意思的,但随机结合导致了非线性化问题,超出了本章范围,然而用其它技巧,在随机结合的情况下可以把(24)式改写为
(25)
下面给出数值的例子:
某地区有10%的黑人是镰状网性贫血症隐性患者,如果控制结合,根据(24)式可知下一代(大约27年)的隐性患者将减少到5%;如果随机结合,根据(25)式,可以预言下一代人中有9.5%是隐性患者,并且可计算出大约每出生400个黑人孩子,其中有一个是显性患者.
4.3 链遗传模型
链遗传是指雄性具有一个基因或,雌性具有两个基因,或,或.其遗传规律是雄性后代以相等概率得到母体两个基因中的一个,雌性后代从父体中得到一个基因,并从母体的两个基因中等可能地得到一个.下面,研究与链遗传有关的近亲繁殖过程.
(a)假设
(i)从一对雌雄结合开始,在它们的后代中,任选雌雄各一个成配偶,然后在它们产生的后代中任选两个结成配偶.如此继续下去.
(ii)父体与母体的基因型组成同胞对,同胞对的形式有,,,,,六种.初始一对雌雄的同胞对,是这六种类型中的任一种,其后代的基因型如下表所示.
| 父体—母体的基因型 | ||||||
后代 基因型 | 1 | 1/2 | 0 | 1 | 1/2 | 0 | |
0 | 1/2 | 1 | 0 | 1/2 | 1 | ||
1 | 1/2 | 0 | 0 | 0 | 0 | ||
0 | 1/2 | 1 | 1 | 1/2 | 0 | ||
0 | 0 | 0 | 0 | 1/2 | 1 |
(iii)在每一代中,配偶的同胞对也是六种类型之一,并有确定的概率.为计算这些概率,设分别是第代中配偶的同胞对为,,,,,型的概率,.令
,
(iv)如果第代配偶的同胞对是型,那么它们的雄性后代将等可能地得到基因和,它们的雌性后代的基因型将等可能地是或.又由于第代雌雄结合是随机的,那么第代配偶的同胞对将等可能地为四种类型,,,之一.对于其它类型的同胞对,我们可以进行同样分析,因此有
, (26)
其中
从(26)式中易得
,
编写如下Matlab程序:
syms n a0 b0 c0 d0 e0 f0
M=[1 1/4 0 0 0 0;0 1/4 0 1 1/4 0;0 0 0 0 1/4 0;
0 1/4 0 0 0 0;0 1/4 1 0 1/4 0;0 0 0 0 1/4 1];
M=sym(M);
[p,lamda]=eig(M);
x=p*lamda.^n*p^(-1)*[a0;b0;c0;d0;e0;f0];
x=simple(x)
由上述程序计算结果可以看出
当时,,
因此,在极限情况下所有同胞对或者是型,或者是型.如果初始的父母体同胞对是型,即,而,于是,当时
即同胞对是型的概率是,是型的概率是.
习 题
1. (汉诺塔问题)个大小不同的圆盘依其半径大小依次套在桩上,大的在下,小的在上.现要将此个盘移到空桩或上,但要求一次只能移动一个盘且移动过程中,始终保持大盘在下,小盘在上.移动过程中桩也可利用.设移动个盘的次数为,试建立关于的差分方程,并求的通项公式.
2. 设第一月初有雌雄各一的一对小兔.假定两月后长成成兔,同时(即第三月)开始每月初产雌雄各一的一对小兔,新增小兔也按此规律繁殖.设第月末共有对兔子,试建立关于的差分方程,并求的通项公式.
3. 在常染色体遗传的问题中,假设植物总是和基因型是的植物结合.求在第代中,基因型为和的植物的百分率,并求当趋于无穷大时,基因型分布的极限.