首页 > 代码库 > LWDB

LWDB

题意:

给一棵 $n$ 个节点的树,维护两种操作:

  1.将距离 $x$ $distance \leq d$ 的点染成 $c$

  2.询问 $x$ 的颜色。

 

解法:

首先将染色可以转换为每个时间对应一个颜色,问题转化为区间取 $max$

动态树分治,即可。

考虑朴素点分治中的每一个重心,将其管辖的所有点按照到重心的距离从大到小排序,然后用线段树维护。

修改时,从 $x$ 向上走,将每一个重心 $t$ 中 $dist<x,t> + dist<t,y>\leq d$ 的点修改。

查找时,从 $x$ 向上走,查询每一个重心中 $x$ 所对应的值,求 $max$ 即可。

$O(nlog^2n)$

 

技术分享
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>

#define p E[i].x
#define N 100010
#define M 7000010
#define l(x) ch[x][0]
#define r(x) ch[x][1]
#define MP(x, y) make_pair(x, y)
#define LL long long

using namespace std;

typedef pair<int,int> PII;

struct edge
{
    int x, to, v;
}E[N<<1];

int totE, totn, n, m, hev, lef_now;
int g[N], h[N], de[N], siz[N], root[N], fa[N][21], col[N], d[N];
int ch[M][2], setv[M];
vector<PII> nod[N], id[N];
vector<int> hevs[N];
int dis[N][21];
bool v[N];

void addedge(int x, int y, int v)
{
    E[++totE] = (edge){y, g[x], v}; g[x] = totE;
}

int build(int l, int r)
{
    int x = ++totn;
    setv[x] = 0;
    if(l == r) return x;
    int mid = (l+r)>>1;
    l(x) = build(l, mid);
    r(x) = build(mid+1, r);
    return x;
}

void push(int x)
{
    if(!setv[x]) return;
    setv[l(x)] = setv[x];
    setv[r(x)] = setv[x];
    setv[x] = 0;
}

int ask(int x, int l, int r, int qx)
{
    if(l<r) push(x);
    if(l == r) return setv[x];
    int mid = (l+r)>>1;
    if(qx <= mid) return ask(l(x), l, mid, qx);
    else return ask(r(x), mid+1, r, qx);
}

void change(int x, int l, int r, int ql, int qr, int qv)
{
    if(l<r) push(x);
    if(ql<=l && r<=qr)
    {
        setv[x] = qv;
        return;
    }
    int mid=(l+r)>>1;
    if(ql <= mid) change(l(x),l,mid,ql,qr,qv);
    if(mid < qr) change(r(x),mid+1,r,ql,qr,qv);
}

int dist(int x, int y)
{
    if(de[x] < de[y]) swap(x, y);
    int ans = 0;
    for(int i = 20;~i;i--)
        if(de[fa[x][i]] >= de[y]) ans += dis[x][i], x = fa[x][i];
    if(x == y) return ans;
    for(int i = 20;~i;i--)
        if(fa[x][i] != fa[y][i])
        {
            ans += dis[x][i]; x = fa[x][i]; 
            ans += dis[y][i]; y = fa[y][i];
        }
    return ans+dis[x][0]+dis[y][0];
}

void dfs1(int x, int tmp)
{
    siz[x] = 1;
    h[x] = 0;
    for(int i = g[x];i;i = E[i].to)
        if(!v[p] && p != tmp)
        {
            dfs1(p, x);
            h[x] = max(h[x], siz[p]);
            siz[x] += siz[p];
        }
    h[x] = max(h[x], lef_now - siz[x]);
    if(!hev || h[x] < h[hev]) hev = x;
}

void dfs(int x)
{
    for(int i = g[x];i;i = E[i].to)
        if(p != fa[x][0])
        {
            fa[p][0] = x;
            dis[p][0] = E[i].v;
            de[p] = de[x] + 1;
            dfs(p);
        }
}

void dfs2(int x, int tmp, int now)
{
    nod[now].push_back(MP(d[x], x));
    for(int i = g[x];i;i = E[i].to)
        if(!v[p] && p != tmp)
        {
            d[p] = d[x] + E[i].v;
            dfs2(p, x, now);
        }
}

void solve(int x)
{
    v[x] = 1;
    d[x] = 0;
    dfs2(x, x, x);
    sort(nod[x].begin(), nod[x].end());
    for(int i = 0;i < (int)nod[x].size();i++)
    {
        id[x].push_back( MP(nod[x][i].second, i) );
        hevs[nod[x][i].second].push_back(x);
    }
    sort(id[x].begin(), id[x].end());
    root[x] = build(0, nod[x].size()-1);
    for(int i = g[x];i;i = E[i].to)
        if(!v[p])
        {
            hev = 0;
            lef_now = siz[p];
            dfs1(p, x);
            solve(hev);
        }
}

int find(int x,int len)
{
    int l=0,r=nod[x].size()-1;
    while(r-l>4)
    {
        int mid = (l+r)>>1;
        if(nod[x][mid].first <= len) l=mid;
        else r=mid;
    }
    for(int i=r;i>=l;i--)
        if(nod[x][i].first <= len) return i;
    return -1;
}

void com_change(int x, int len, int v)
{
    for(int i = 0;i < (int)hevs[x].size();i++)
    {
        int tmp = hevs[x][i];
        int t = find(tmp, len - dist(x, tmp));
        if(t == -1) continue;
        change(root[tmp], 0, id[tmp].size()-1, 0, t, v);
    }
}

int com_ask(int x)
{
    int ans = 0;
    for(int i = 0;i < (int)hevs[x].size();i++)
    {
        int tmp = hevs[x][i];
        int t = (*lower_bound(id[tmp].begin(), id[tmp].end(), MP(x, -1))).second;
        ans = max(ans, ask(root[tmp], 0, id[tmp].size()-1, t));
    }
    return col[ans];
}

int main()
{
    scanf("%d", &n);
    for(int i = 1, x, y, v;i < n;i++)
    {
        scanf("%d %d %d", &x, &y, &v);
        addedge(x, y, v);
        addedge(y, x, v);
    }
    de[1]=1;
    dfs(1);
    for(int j = 1;j <= 20;j++)
    {
        for(int i = 1;i <= n;i++)
        {
            fa[i][j] = fa[fa[i][j-1]][j-1];
            dis[i][j] = dis[fa[i][j-1]][j-1] + dis[i][j-1];
        }
    }
    totn = 0;
    hev = 0;
    lef_now = n;
    dfs1(1, 1);
    solve(hev);
    scanf("%d", &m);
    int x,cmd,len,tot=0;
    while(m--)
    {
        scanf("%d%d",&cmd,&x);
        if(cmd==1)
        {
            scanf("%d%d",&len,&col[++tot]);
            com_change(x,len,tot);
        }
        else printf("%d\n",com_ask(x));
    }
    return 0;
}
View Code

 

LWDB