首页 > 代码库 > Android应用开发:网络工具——Volley(二)

Android应用开发:网络工具——Volley(二)

引言

Android应用开发:网络工具——Volley(一)中结合Cloudant服务介绍了Volley的一般使用方法,当中包括了两种请求类型StringRequest和JsonObjectRequest。一般的请求任务相信都能够通过他们完毕了,只是在千变万化的网络编程中。我们还是希望能够对请求类型、过程等步骤进行全然的把控,本文就从Volley源代码角度来分析一下,一个网络请求在Volley中是怎样运作的。也能够看作网络请求在Volley中的生命周期。


源头RequestQueue


在使用Volley前,必须有一个网络请求队列来承载请求。所以先分析一下这个请求队列是怎样申请。假设运作的。

在Volley.java中:

    /**
      * Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
      *
      * @param context A {@link Context} to use for creating the cache dir.
      * @param stack An {@link HttpStack} to use for the network, or null for default.
      * @return A started {@link RequestQueue} instance.
      */
     public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
         File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);

         String userAgent = "volley/0";
         try {
             String packageName = context.getPackageName();
             PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
             userAgent = packageName + "/" + info.versionCode;
         } catch (NameNotFoundException e) {
         }

         if (stack == null) {
             if (Build.VERSION.SDK_INT >= 9) {
                 stack = new HurlStack();
             } else {
                 // Prior to Gingerbread, HttpUrlConnection was unreliable.
                 // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                 stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
             }
         }

         Network network = new BasicNetwork(stack);

         RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
         queue.start();

         return queue;
     }

     /**
      * Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
      *
      * @param context A {@link Context} to use for creating the cache dir.
      * @return A started {@link RequestQueue} instance.
      */
     public static RequestQueue newRequestQueue(Context context) {
         return newRequestQueue(context, null);
     }

通常使用的是第二个接口。也就是仅仅有一个參数的newRequestQueue(Context context),使stack默觉得null。

能够看到我们得到的RequestQueue是通过RequestQueue申请。然后又调用了其start方法,最后返回给我们的。接下来看一下RequestQueue的构造方法:

     /**
      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
      *
      * @param cache A Cache to use for persisting responses to disk
      * @param network A Network interface for performing HTTP requests
      * @param threadPoolSize Number of network dispatcher threads to create
      * @param delivery A ResponseDelivery interface for posting responses and errors
      */
     public RequestQueue(Cache cache, Network network, int threadPoolSize,
             ResponseDelivery delivery) {
         mCache = cache;
         mNetwork = network;
         mDispatchers = new NetworkDispatcher[threadPoolSize];
         mDelivery = delivery;
     }

     /**
      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
      *
      * @param cache A Cache to use for persisting responses to disk
      * @param network A Network interface for performing HTTP requests
      * @param threadPoolSize Number of network dispatcher threads to create
      */
     public RequestQueue(Cache cache, Network network, int threadPoolSize) {
         this(cache, network, threadPoolSize,
                 new ExecutorDelivery(new Handler(Looper.getMainLooper())));
     }

     /**
      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
      *
      * @param cache A Cache to use for persisting responses to disk
      * @param network A Network interface for performing HTTP requests
      */
     public RequestQueue(Cache cache, Network network) {
         this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
     }
RequestQueue有三种构造方法,通过newRequestQueue(Context context)调用的是最后一种。创建了一个工作池,默认承载网络线程数量为4个。而后两种构造方法都会调用到第一个。进行了一些局部变量的赋值。并没有什么须要多说的,接下来看start()方法:

     public void start() {
         stop();  // Make sure any currently running dispatchers are stopped.
         // Create the cache dispatcher and start it.
         mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
         mCacheDispatcher.start();

         // Create network dispatchers (and corresponding threads) up to the pool size.
         for (int i = 0; i < mDispatchers.length; i++) {
             NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                     mCache, mDelivery);
             mDispatchers[i] = networkDispatcher;
             networkDispatcher.start();
         }
     }

首先进行了stop操作,将所有的运行者所有退出,从而确保当前没有不论什么正在工作的运行者。然后基本的工作就是开启一个CacheDispatcher和符合线程池数量的NetworkDispatcher。首先分析CacheDispatcher。


CacheDispatcher缓存操作


CacheDispatcher为缓存队列处理器。创建伊始就被责令開始工作start()。由于CacheDispatcher继承于Thread类,所以须要看一下它所复写的run方法:

     @Override
     public void run() {
         if (DEBUG) VolleyLog.v("start new dispatcher");
         Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

         // Make a blocking call to initialize the cache.
         mCache.initialize(); //初始化一个缓存

         while (true) {
             try {
                 // Get a request from the cache triage queue, blocking until
                 // at least one is available.
                 final Request<?> request = mCacheQueue.take(); //在缓存序列中获取请求,堵塞操作
                 request.addMarker("cache-queue-take");

                 // If the request has been canceled, don‘t bother dispatching it.
                 if (request.isCanceled()) { //若该请求已经被取消了,则直接跳过
                     request.finish("cache-discard-canceled");
                     continue;
                 }

                 // Attempt to retrieve this item from cache.
                 Cache.Entry entry = mCache.get(request.getCacheKey()); //尝试在缓存中查找是否有缓存数据
                 if (entry == null) {
                     request.addMarker("cache-miss"); //若没有则缓存丢失,证明这个请求并没有获得实施过。扔进网络请求队列中
                     // Cache miss; send off to the network dispatcher.
                     mNetworkQueue.put(request);
                     continue;
                 }

                 // If it is completely expired, just send it to the network.
                 if (entry.isExpired()) { //若请求已经过期,那么就要去获取最新的消息。所以依旧丢进网络请求队列中
                     request.addMarker("cache-hit-expired");
                     request.setCacheEntry(entry);
                     mNetworkQueue.put(request);
                     continue;
                 }

                 // We have a cache hit; parse its data for delivery back to the request.
                 request.addMarker("cache-hit");
                 Response<?

> response = request.parseNetworkResponse( new NetworkResponse(entry.data, entry.responseHeaders)); //请求有缓存数据且没有过期,那么能够进行解析,交给请求的parseNetworkReponse方法进行解析。这种方法我们能够在自己定义个Request中进行复写自己定义 request.addMarker("cache-hit-parsed"); if (!entry.refreshNeeded()) { //假设请求有效且并不须要刷新,则丢进Delivery中处理,终于会触发如StringRequest这种请求子类的onResponse或onErrorResponse // Completely unexpired cache hit. Just deliver the response. mDelivery.postResponse(request, response); } else { //请求有效,可是须要进行刷新,那么须要丢进网络请求队列中 // Soft-expired cache hit. We can deliver the cached response, // but we need to also send the request to the network for // refreshing. request.addMarker("cache-hit-refresh-needed"); request.setCacheEntry(entry); // Mark the response as intermediate. response.intermediate = true; // Post the intermediate response back to the user and have // the delivery then forward the request along to the network. mDelivery.postResponse(request, response, new Runnable() { @Override public void run() { try { mNetworkQueue.put(request); } catch (InterruptedException e) { // Not much we can do about this. } } }); } } catch (InterruptedException e) { // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } } }

CacheDispatcher做了非常多事情,之后再来慢慢的消化他们。如今先看一下我们的请求通过add之后到了哪里去。

查看RequestQueue.java的add方法:

     /**
      * Adds a Request to the dispatch queue.
      * @param request The request to service
      * @return The passed-in request
      */
     public <T> Request<T> add(Request<T> request) {
         // Tag the request as belonging to this queue and add it to the set of current requests.
         request.setRequestQueue(this);
         synchronized (mCurrentRequests) {
             mCurrentRequests.add(request); //增加到当前的队列中,是一个HashSet
         }

         // Process requests in the order they are added.
         request.setSequence(getSequenceNumber());
         request.addMarker("add-to-queue");

         // If the request is uncacheable, skip the cache queue and go straight to the network.若这个请求不须要被缓存,须要直接做网络请求,那么就直接加到网络请求队列中
         if (!request.shouldCache()) {
             mNetworkQueue.add(request);
             return request;
         }

         // Insert request into stage if there‘s already a request with the same cache key in flight.
         synchronized (mWaitingRequests) {
             String cacheKey = request.getCacheKey(); // Volley中使用请求的URL作为存储的key
             if (mWaitingRequests.containsKey(cacheKey)) { //若等待的请求中有与所请求的URL同样的请求,则须要做层级处理
                 // There is already a request in flight. Queue up.
                 Queue<Request<?

>> stagedRequests = mWaitingRequests.get(cacheKey); if (stagedRequests == null) { stagedRequests = new LinkedList<Request<?

>>(); } stagedRequests.add(request); mWaitingRequests.put(cacheKey, stagedRequests); //若与已有的请求URL同样,则创建一个层级列表保存他们。然后再放入等待请求列表中 if (VolleyLog.DEBUG) { VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey); } } else { // Insert ‘null‘ queue for this cacheKey, indicating there is now a request in // flight. mWaitingRequests.put(cacheKey, null); //若是一个全新的请求,则直接放入等待队列中,注意数据为null,仅仅有多个url产生层级关系了才有数据 mCacheQueue.add(request); //放入缓存队列中。缓存队列会对请求做处理 } return request; } }


这里的mCacheQueue就是放入CacheDispatcher的那个堵塞队列,所以在add中加入到mCacheQueue后。由于CacheDispatcher已经执行起来了,所以CacheDispatcher会对刚刚加入的网络请求做处理。分析到这里,能够进行一下阶段性的梳理:

1. 我们的请求在增加到RequestQueue后,首先会增加到事实上体类的mCurrentRequests列表中做本地管理

2. 假设之前已经存在了和本次请求相同URL的请求,那么会将层级关系保存在mWaitingRequests中。若没有则层级关系为null,相同也会保存在mWaitingRequests中

3. 对于没有层级关系(新的URL)的网络请求会直接放入mCacheQueue中让CacheDispatcher对其进行处理

分析到这里发现对于同一个URL的请求处理比較特殊,当第一次做某个网络请求A时候,A会直接放入缓存队列中由CacheDispatcher进行处理。下一次进行同一个URL的请求B时,若此时A还存在于mWaitingRequests队列中则B的请求被雪藏,不放入mCacheQueue缓存队列进行处理,仅仅是等待。那么等待到什么时候呢?不难猜想到是须要等待A的请求完成后才干够进行B的请求。归结究竟就是须要知道mWaitingRequest是怎样运作的?什么时候存储在当中的层级结构才会被拿出来进行请求。临时记下这个问题,如今回头再去继续分析CacheDispatcher。

CacheDispatcher对请求的处理能够归结为下面几种情况:


1. 对于取消的请求,直接表示为完毕并跳过。

2. 对于尚未有应答数据的、数据过期、有明显标示须要刷新的请求直接丢入mNetworkQueue。mNetworkQueue同mCacheQueue一样,是一个堵塞队列;

3. 对于有应答数据且数据尚未过期的请求会出发Request的parseNetworkResponse方法进行数据解析,这种方法能够通过继承Request类进行复写(定制);

4. 对于有效应答(不管是否须要更新)都会用mDelivery进行应答,须要刷新的请求则会再次放入到mNetworkQueue中去。

对于(1)暂不做分析,后边会遇到。

下边分析一下mNetworkQueue的运作原理,mNetworkQueue是在CacheDispatcher构造时传入的參数。通过RequestQueue的start()方法不难分析出相相应的处理器为NetworkDispatcher。


NetworkDispatcher网络处理

在RequestQueue的start()方法中,NetworkDispatcher存在多个。其数量等于RequestQueue构造时候传入的网络处理线程数量相等,默觉得4个。

    public void start() {
        stop();  // Make sure any currently running dispatchers are stopped.
        // Create the cache dispatcher and start it.
        mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
        mCacheDispatcher.start();

        // Create network dispatchers (and corresponding threads) up to the pool size.
        for (int i = 0; i < mDispatchers.length; i++) {
            NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                    mCache, mDelivery);
            mDispatchers[i] = networkDispatcher;
            networkDispatcher.start();
        }
    }

每个dispatcher被创造后都及时进行了start()操作。而NetworkDispatcher也是继承于Thread的类,那么之后须要分析其复写的run方法,在这之前先看一下它的构造方法:

    public NetworkDispatcher(BlockingQueue<Request<?>> queue,
            Network network, Cache cache,
            ResponseDelivery delivery) {
        mQueue = queue;
        mNetwork = network;
        mCache = cache;
        mDelivery = delivery;
    }
mQueue即为mNetworkQueue,这与CacheDispatcher中使用到的是同一个。

而mNetwork默认是BasicNetwork。mCache为缓存。mDelivery为终于的消息配发者,之后会分析到。

接下来看其复写的run()方法:

    @Override
    public void run() {
        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); //设置线程可后台执行,不会由于系统休眠而挂起
        Request<?

> request; while (true) { try { // Take a request from the queue. request = mQueue.take(); //mQueue即为mNetworkQueue,从mNetworkQueue中获取请求,也就是说CacheDispatcher丢过来的请求是从这里被NetworkDispatcher获取到的。

注意这里获取请求是堵塞的。 } catch (InterruptedException e) { //退出操作,NetworkDispatcher被设置成退出时候发出中断请求 // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } try { request.addMarker("network-queue-take"); // If the request was cancelled already, do not perform the // network request. if (request.isCanceled()) { //若请求已经被取消。则标记为完毕(被取消),然后继续下一个请求 request.finish("network-discard-cancelled"); continue; } addTrafficStatsTag(request); // Perform the network request. NetworkResponse networkResponse = mNetwork.performRequest(request); //使用BasicNetwork处理请求 request.addMarker("network-http-complete"); // If the server returned 304 AND we delivered a response already, // we‘re done -- don‘t deliver a second identical response. if (networkResponse.notModified && request.hasHadResponseDelivered()) { request.finish("not-modified"); continue; } // Parse the response here on the worker thread. Response<?

> response = request.parseNetworkResponse(networkResponse); //处理网络请求应答数据 request.addMarker("network-parse-complete"); // Write to cache if applicable. // TODO: Only update cache metadata instead of entire record for 304s. if (request.shouldCache() && response.cacheEntry != null) { mCache.put(request.getCacheKey(), response.cacheEntry); request.addMarker("network-cache-written"); } // Post the response back. request.markDelivered(); //标记请求为已应答并做消息分发处理 mDelivery.postResponse(request, response); } catch (VolleyError volleyError) { parseAndDeliverNetworkError(request, volleyError); //若产生Volley错误则会触发Request的parseNetworkError方法以及mDelivery的postError方法 } catch (Exception e) { VolleyLog.e(e, "Unhandled exception %s", e.toString()); mDelivery.postError(request, new VolleyError(e)); //对于未知错误,仅仅会触发mDelivery的postError方法。 } } }

mNetwork.performRequest是真正的网络请求实施的地方,这里对BasicNetwork不做分析。网络请求的回应是NetworkResponse类型,看一下这个类型是怎么样的:

/**
  * Data and headers returned from {@link Network#performRequest(Request)}.
  */
 public class NetworkResponse {
     /**
      * Creates a new network response.
      * @param statusCode the HTTP status code
      * @param data Response body
      * @param headers Headers returned with this response, or null for none
      * @param notModified True if the server returned a 304 and the data was already in cache
      */
     public NetworkResponse(int statusCode, byte[] data, Map<String, String> headers,
             boolean notModified) {
         this.statusCode = statusCode;
         this.data = http://www.mamicode.com/data;>NetworkResponse保存了请求的回应数据,包含数据本身和头,还有状态码以及其它相关信息。依据请求类型的不同,对回应数据的处理方式也各有不同,比如回应是String和Json的差别。所以自然而然的网络请求类型须要对它获得的回应数据自行处理,也就触发了Request子类的parseNetworkResponse方法。下边以StringRequest为例进行分析:

     @Override
     protected Response<String> parseNetworkResponse(NetworkResponse response) {
         String parsed;
         try {
             parsed = new String(response.data, HttpHeaderParser.parseCharset(response.headers));
         } catch (UnsupportedEncodingException e) {
             parsed = new String(response.data);
         }
         return Response.success(parsed, HttpHeaderParser.parseCacheHeaders(response));
     }
StringRequest中对于回应首先尝试解析数据和辨别头数据编码类型。若失败则仅仅解析数据部分。终于都是触发Request的success方法。參数中还使用Volley自带的HttpHeaderParser对头信息进行了解析。

须要看一下Response的success方法到底做了什么。鉴于Response类总共没有多少代码,就所有拿出来做分析了:

 public class Response<T> {

     /** 处理解析过的回应信息的回调接口 */
     public interface Listener<T> {
         /** 当接收到回应后 */
         public void onResponse(T response);
     }

     /** 处理错误回应的回调接口 */
     public interface ErrorListener {
         /**
          * 发生错误时的回调接口
          */
         public void one rrorResponse(VolleyError error);
     }

     /** 返回一个包括已解析结果的成功回应 */
     public static <T> Response<T> success(T result, Cache.Entry cacheEntry) {
         return new Response<T>(result, cacheEntry);
     }

     /**
      * 返回错误回应,包括错误码以及可能的其它消息
      */
     public static <T> Response<T> error(VolleyError error) {
         return new Response<T>(error);
     }

     /** 解析过的响应信息,错误时为null */
     public final T result;

     /** 响应的缓存数据,错误时为null */
     public final Cache.Entry cacheEntry;

     /** 具体的错误信息 */
     public final VolleyError error;

     /** 此回应软件希望得到第二次回应则为true,即须要刷新 */
     public boolean intermediate = false;

     /**
      * 返回true代表回应成功。没有错误。有错误则为false
      */
     public boolean isSuccess() {
         return error == null;
     }


     private Response(T result, Cache.Entry cacheEntry) {
         this.result = result;
         this.cacheEntry = cacheEntry;
         this.error = null;
     }

     private Response(VolleyError error) {
         this.result = null;
         this.cacheEntry = null;
         this.error = error;
     }
 }
这就是网络响应的类,非常easy,成功或错误都会直接进行标记。通过isSuccess接口提供外部查询。假设响应成功。则消息保存在result中,解析头信息得到的缓存数据保存在cacheEntry中。

Request作为基类,Volley自带的又代表性的其扩展类又StringRequest和JsonObjectRequest。假设开发人员有比較大的自己定义需求就须要继承Request复写内部一些重要的方法。

同一时候mDelivery出场的机会这么多,为什么他总出如今处理请求的地方呢?下边就对它和Request一起进行分析,当中Request依旧以StringRequest为例。

ExecutorDelivery消息分发者与Request请求

mDelivery类型为ResponseDelivery,实为接口类型:

public interface ResponseDelivery {
    /**
     * Parses a response from the network or cache and delivers it.
     */
    public void postResponse(Request<?> request, Response<?> response);

    /**
     * Parses a response from the network or cache and delivers it. The provided
     * Runnable will be executed after delivery.
     */
    public void postResponse(Request<?> request, Response<?> response, Runnable runnable);

    /**
     * Posts an error for the given request.
     */
    public void postError(Request<?> request, VolleyError error);
}

三个接口当中两个是回应网络应答的,最后一个回应网络错误。追溯RequestQueue构造的时候,默认的分发者为ExecutorDelivery:

     public RequestQueue(Cache cache, Network network, int threadPoolSize) {
         this(cache, network, threadPoolSize,
                 new ExecutorDelivery(new Handler(Looper.getMainLooper())));
     }

可见,消息分发者工作在主线程上。

常见的分发者所做的工作有:

     @Override
     public void postResponse(Request<?> request, Response<?> response) { //发出响应
         postResponse(request, response, null);
     }

     @Override
     public void postResponse(Request<?> request, Response<?

> response, Runnable runnable) { //发出响应 request.markDelivered(); request.addMarker("post-response"); mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable)); } @Override public void postError(Request<?

> request, VolleyError error) { //发出错误响应 request.addMarker("post-error"); Response<?> response = Response.error(error); mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, null)); }

这里发现一个问题,事实上在NetworkDispatcher中的request.markDelivered()是多余的。在postResponse中已经运行了。不管是正常的响应还是错误都会运行ResponseDeliveryRunnable:

private class ResponseDeliveryRunnable implements Runnable {
         private final Request mRequest;
         private final Response mResponse;
         private final Runnable mRunnable;

         public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
             mRequest = request;
             mResponse = response;
             mRunnable = runnable; //若指定了runnable。如上面分析的在网络请求有效可是须要更新的时候会指定一个runnable的
         }

         @SuppressWarnings("unchecked")
         @Override
         public void run() {
             // If this request has canceled, finish it and don‘t deliver.
             if (mRequest.isCanceled()) { //若请求被取消,结束并做标记
                 mRequest.finish("canceled-at-delivery");
                 return;
             }

             // Deliver a normal response or error, depending.
             if (mResponse.isSuccess()) { //若请求成功则处理回应
                 mRequest.deliverResponse(mResponse.result);
             } else {  //若不成功则处理错误
                 mRequest.deliverError(mResponse.error);
             }

             // If this is an intermediate response, add a marker, otherwise we‘re done
             // and the request can be finished.
             if (mResponse.intermediate) {
                 mRequest.addMarker("intermediate-response");
             } else {
                 mRequest.finish("done");
             }

             // If we have been provided a post-delivery runnable, run it.
             if (mRunnable != null) { //假设指定了额外的runnable这里还会对它进行运行
                 mRunnable.run();
             }
        }
     }

Delivery作为网络回应的分发、处理者,对回应数据进行了最后一层的把关。而当Delivery查询回应是否成功时,由于Request已经对回应信息做过处理(检查其成功还是错误)。所以能够查询到正确的状态。若查询到回应成功则会触发Request的deliverResponse方法(以StringRequest为例):

     @Override
     protected void deliverResponse(String response) {
         mListener.onResponse(response);
     }
事实上就是触发了用户自己定义的网络响应监听器,mListener在StringRequest的构造中进行赋值:

     public StringRequest(int method, String url, Listener<String> listener,
             ErrorListener errorListener) {
         super(method, url, errorListener);
         mListener = listener;
     }

     public StringRequest(String url, Listener<String> listener, ErrorListener errorListener) {
         this(Method.GET, url, listener, errorListener);
     }
当查询到网络回应数据不成功时候将触发Request的deliverError方法,这种方法StringRequest并没有复写,所以追溯到其父类Request中:

     public void deliverError(VolleyError error) {
         if (mErrorListener != null) {
             mErrorListener.onErrorResponse(error);
         }
     }
这里mErrorListener也是用户在使用Volley时候自定的错误监听器,在StringRequest中并没有处理,是通过super运行Request的构造方法进行赋值的:

     public Request(int method, String url, Response.ErrorListener listener) {
         mMethod = method;
         mUrl = url;
         mErrorListener = listener;
         setRetryPolicy(new DefaultRetryPolicy());

         mDefaultTrafficStatsTag = findDefaultTrafficStatsTag(url);
     }
当这个请求已经完整的确定完毕后,Delivery会通知Request进行结束操作——finish:

     void finish(final String tag) {
         if (mRequestQueue != null) { //若请求队列有效,则在请求队列中标记当前请求为结束
             mRequestQueue.finish(this);
         }  //之后都是日志相关,不做分析
         if (MarkerLog.ENABLED) {
             final long threadId = Thread.currentThread().getId();
             if (Looper.myLooper() != Looper.getMainLooper()) {
                 // If we finish marking off of the main thread, we need to
                 // actually do it on the main thread to ensure correct ordering.
                 Handler mainThread = new Handler(Looper.getMainLooper());
                 mainThread.post(new Runnable() {
                     @Override
                     public void run() {
                         mEventLog.add(tag, threadId);
                         mEventLog.finish(this.toString());
                     }
                 });
                 return;
             }

             mEventLog.add(tag, threadId);
             mEventLog.finish(this.toString());
         } else {
             long requestTime = SystemClock.elapsedRealtime() - mRequestBirthTime;
             if (requestTime >= SLOW_REQUEST_THRESHOLD_MS) {
                 VolleyLog.d("%d ms: %s", requestTime, this.toString());
             }
         }
     }

mRequestQueue为RequestQueue类型,在开篇中就分析了RequestQueue,相关的另一个问题当时没有进行挖掘,即mWaitingQueue中保留的同样URL的多个请求层级何时才可以被触发,下边分析mRequestQueue的finish方法就能解开这个疑问了:

     void finish(Request<?> request) {
         // Remove from the set of requests currently being processed.
         synchronized (mCurrentRequests) {
             mCurrentRequests.remove(request); //当请求已完毕,会从mCurrentRequests队列中被移除掉
         }

         if (request.shouldCache()) { //默认是true的,除非你调用Request的setShouldCache方法主动设定
             synchronized (mWaitingRequests) {
                 String cacheKey = request.getCacheKey(); //获取cacheKey,前边说过就是URL
                 Queue<Request<?

>> waitingRequests = mWaitingRequests.remove(cacheKey); //移除列表中的这个请求,同一时候取出其可能存在的层级关系 if (waitingRequests != null) { if (VolleyLog.DEBUG) { VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.", waitingRequests.size(), cacheKey); } // Process all queued up requests. They won‘t be considered as in flight, but // that‘s not a problem as the cache has been primed by ‘request‘. mCacheQueue.addAll(waitingRequests); //若真的有层级关系,那么将其它的请求所有增加到mCacheQueue中交由CacheDispatcher处理 } } } }

好了,终于待定的问题也攻克了。这就是一个Request网络请求在Volley中的来龙去脉。


总结


1. 当一个RequestQueue被成功申请后会开启一个CacheDispatcher(缓存调度器)和4个(默认)NetworkDispatcher(网络请求调度器);

2. CacheDispatcher缓存调度器最为第一层缓冲,開始工作后堵塞的从缓存序列mCacheQueue中取得请求:

  a. 对于已经取消了的请求。直接标记为跳过并结束这个请求

  b. 全新或过期的请求。直接丢入mNetworkQueue中交由N个NetworkDispatcher进行处理

  c. 已获得缓存信息(网络应答)却没有过期的请求,交由Request的parseNetworkResponse进行解析,从而确定此应答是否成功。然后将请求和应答交由Delivery分发者进行处理,假设须要更新缓存那么该请求还会被放入mNetworkQueue中

3. 用户将请求Request add到RequestQueue之后:

  a. 对于不须要缓存的请求(须要额外设置,默认是须要缓存)直接丢入mNetworkQueue交由N个NetworkDispatcher处理。

  b. 对于须要缓存的,全新的请求增加到mCacheQueue中给CacheDispatcher处理

  c. 须要缓存,可是缓存列表中已经存在了同样URL的请求,放在mWaitingQueue中做临时雪藏,待之前的请求完成后。再又一次加入到mCacheQueue中;

4. 网络请求调度器NetworkDispatcher作为网络请求真实发生的地方。对消息交给BasicNetwork进行处理,相同的。请求和结果都交由Delivery分发者进行处理。

5. Delivery分发者实际上已经是对网络请求处理的最后一层了,在Delivery对请求处理之前,Request已经对网络应答进行过解析。此时应答成功与否已经设定。

而后Delivery依据请求所获得的应答情况做不同处理:

  a. 若应答成功,则触发deliverResponse方法,终于会触发开发人员为Request设定的Listener

  b. 若应答失败,则触发deliverError方法,终于会触发开发人员为Request设定的ErrorListener

处理完后,一个Request的生命周期就结束了,Delivery会调用Request的finish操作。将其从mRequestQueue中移除。与此同一时候,假设等待列表中存在同样URL的请求,则会将剩余的层级请求所有丢入mCacheQueue交由CacheDispatcher进行处理。


一个Request的生命周期:

1. 通过add增加mRequestQueue中,等待请求被运行;

2. 请求运行后。调用自身的parseNetworkResponse对网络应答进行处理。并推断这个应答是否成功;

3. 若成功。则终于会触发自身被开发人员设定的Listener。若失败,终于会触发自身被开发人员设定的ErrorListener。


至此Volley中网络请求的来龙去脉分析清楚了,假设我们由于一些原因须要继承Request来自己定义自己的Request,最须要注意的就是parseNetworkResponse方法的复写。此方法对请求之后的命运有决定性的作用。

Android应用开发:网络工具——Volley(二)