首页 > 代码库 > Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心

Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心

E. Prairie Partition

It can be shown that any positive integer x can be uniquely represented as x = 1 + 2 + 4 + ... + 2k - 1 + r, where k and r are integers, k ≥ 0, 0 < r ≤ 2k. Let‘s call that representation prairie partition of x.

For example, the prairie partitions of 12, 17, 7 and 1 are:

12 = 1 + 2 + 4 + 5,

17 = 1 + 2 + 4 + 8 + 2,

7 = 1 + 2 + 4,

1 = 1.

Alice took a sequence of positive integers (possibly with repeating elements), replaced every element with the sequence of summands in its prairie partition, arranged the resulting numbers in non-decreasing order and gave them to Borys. Now Borys wonders how many elements Alice‘s original sequence could contain. Find all possible options!

Input

The first line contains a single integer n (1 ≤ n ≤ 105) — the number of numbers given from Alice to Borys.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1012; a1 ≤ a2 ≤ ... ≤ an) — the numbers given from Alice to Borys.

Output

Output, in increasing order, all possible values of m such that there exists a sequence of positive integers of length m such that if you replace every element with the summands in its prairie partition and arrange the resulting numbers in non-decreasing order, you will get the sequence given in the input.

If there are no such values of m, output a single integer -1.

Examples
input
8
1 1 2 2 3 4 5 8
output
2 
Note

In the first example, Alice could get the input sequence from [6, 20] as the original sequence.

In the second example, Alice‘s original sequence could be either [4, 5] or [3, 3, 3].

 题意:

  每个数都可以表示成2的连续次方和加上一个r

  例如:12 = 1 + 2 + 4 + 5,

  17 = 1 + 2 + 4 + 8 + 2,

  现在给你这些数,让你反过来组成12,17,但是是有不同方案的

  看看样列就懂了,问你方案的长度种类

题解:

   将所有连续的2^x,处理出来,假设有now个序列

   最后剩下的数,我们必须将其放到上面now的尾端,但是我们优先放与当前值最接近的序列尾端,以防大一些的数仍然有位置可以放

   处理出满足条件最多序列数

  二分最少的能满足条件的序列数,也就是将mid个序列全部插入到上面now-mid个序列尾端,这里贪心选择2^x,x小的

#include<bits/stdc++.h>using namespace std;#pragma comment(linker, "/STACK:102400000,102400000")#define ls i<<1#define rs ls | 1#define mid ((ll+rr)>>1)#define pii pair<int,int>#define MP make_pairtypedef long long LL;const long long INF = 1e18+1LL;const double Pi = acos(-1.0);const int N = 1e5+10, M = 1e3+20, mod = 1e9+7,inf = 2e9;LL H[70],a[N];int No,cnt[N],n,cnts;vector<LL > G,ans;vector<LL > all[N];int sum[N],sum2[N];pair<int,LL> P[N];void go(LL x) {    int i;    for(i = 0; i <= 60; ++i) {        if(x < H[i])            break;    }    i--;    for(int j = 0; j <= i; ++j) {        cnt[j]--;        if(cnt[j] < 0) No = 1;        return ;    }}int cango(LL x) {    if(x == 0) return 0;    int ok = 0;    for(int i = 0; i <= 60; ++i) {        if(H[i] <= x) {            cnt[i]--;            if(cnt[i] < 0) {                ok = 1;            }        }    }    if(ok) {       for(int i = 0; i <= 60; ++i)            if(H[i] <= x) cnt[i]++;        return 0;    }    else return 1;}int can(LL now) {    for(int i = G.size()-1; i >= 0; --i) {        int ok = 0;        for(int j = 1; j <= 60; ++j) {            if(G[i] <= H[j] && sum[j-1]) {                sum[j-1]--;                P[++cnts] = MP(j-1,G[i]);                ok = 1;                G.pop_back();                break;            }        }        if(!ok) return 0;    }    return 1;}int allcan(int x) {    int j = x+1,i = 0;    int ok;    while(j <= cnts && i < G.size()) {        if(P[j].second  != 0) j++;        else if(H[P[j].first+1] < G[i]) j++;        else i++,j++;    }    if(i == G.size()) {        return 1;    }    else return 0;}int check(int x) {    x = cnts - x;    if(x > cnts) return 0;    if(x == 0) return 1;    G.clear();    for(int i = 1; i <= x; i++) {        for(int j = 0; j <= P[i].first; ++j) {            G.push_back(H[j]);        }        if(P[i].second) {            G.push_back(P[i].second);        }    }    //for(int i = 0; i < G.size(); ++i) cout<<G[i]<<" ";cout<<endl;    if(allcan(x)) {        return 1;    }    else return 0;}int main() {    H[0] = 1;    for(int i = 1; i <= 60; ++i)H[i] = H[i-1]*2LL;    scanf("%d",&n);    for(int i = 1; i <= n; ++i) {        scanf("%I64d",&a[i]);        int ok = 0;        for(int j = 0; j <= 60; ++j) {            if(a[i] == H[j]) {                ok = 1;                cnt[j]++;                break;            }        }        if(!ok) G.push_back(a[i]);    }    int now = 0;    for(int i = 60; i >=0; --i) {        while(cnt[i]) {            if(cango(H[i])) {             now++;             sum[i]++;            }            else break;        }    }    for(int i = 0; i <= 60; ++i)        for(int j = 1; j <= cnt[i]; ++j) G.push_back(H[i]);    int l= 1,r,ans = -1,tmpr;    if(can(now)) r = now;    else r = -1;    tmpr = r;    for(int i = 0; i <= 60; ++i) {        for(int j = 1; j <= sum[i]; ++j) {            P[++cnts] = MP(i,0);        }    }    sort(P+1,P+cnts+1);    while(l <= r) {        int md = (l + r) >> 1;        if(check(md)) {            ans = md;            r = md-1;        }        else l = md+1;    }    //cout<<ans<<endl;    if(tmpr == -1) puts("-1");    else {        for(int i = ans; i <= tmpr; ++i) cout<<i<<" ";        cout<<endl;    }    return 0;}/*51 2 3 4 5*/

 

Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心