首页 > 代码库 > SymPy库常用函数

SymPy库常用函数

简介

SymPy是一个符号计算的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简 洁、易于理解和扩展。它完全由Python写成,不依赖于外部库。SymPy支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散 数学、几何学、概率与统计、物理学等方面的功能。(来自维基百科的描述)

更多内容请查看本人个人博客:https://huiyang865.github.io/2016/08/27/sympy/

Sympy安装方法

安装命令:pip install sympy

基本数值类型

实数,有理数和整数

SymPy有三个内建的数值类型:实数,有理数和整数。有理数类用两个整数来表示一个有理数。分子与分母,所以Rational(1,2)代表1/2,Rational(5,2)代表5/2,等等。

>>>from sympy import *>>>a = Rational(1,2)>>>a1/2>>>a*21>>>Rational(2)**50/Rational(10)**501/88817841970012523233890533447265625

当利用Python的整数计算时要注意一下,Python只会截取除法的整数部分:

>>>1/20>>>1.0/20.5

然而你可以:

>>>from __future__ import division>>>1/2 #doctest: +SKIP0.5

正确的除法在python3k和isympy中这样做,是标准的。

特殊的常数

我们也可以有一些特殊的常数,像e和pi,它们会被当作符号去对待。(1+pi不会求得值,反而它会保持为1+pi),例如:

>>>pi**2pi**2>>>pi.evalf()3.14159265358979>>>(pi+exp(1)).evalf()5.85987448204884

求表达式的浮点数-evalf()函数

正如你看到的,evalf()函数可以用求出表达式的浮点数。
有一个无穷大的类型,被成为oo:

>>>oo > 99999True>>>oo + 1ooIf the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as>>> (1/x).evalf(subs={x: 3.0}, n=21)0.333333333333333333333rather than>>> (1/x).subs({x: 3.0}).evalf(21)0.333333333333333314830

Sympy基本使用

定义变量-Symbols函数

对比与其他的计算机代数系统,在SymPy中要明确声明符号变量:

>>> x = symbols(‘x‘)>>> x + 1x + 1>>>x,y,z=symbols(‘x y z‘)>>> crazy = symbols(‘unrelated‘)>>> crazy + 1unrelated + 1>>> x = symbols(‘x‘)>>> expr = x + 1>>> x = 2>>> print(expr)x + 1Changing x to 2 had no effect on expr. This is because x = 2 changes the Python variable x to 2, but has no effect on the SymPy Symbol x, which was what we used in creating expr.

变量替换subs函数

>>> x = symbols(‘x‘)>>> expr = x + 1>>> expr.subs(x, 2)3>>> from sympy import pi, exp, limit, oo>>> from sympy.abc import x, y>>> (1 + x*y).subs(x, pi)pi*y + 1>>> (1 + x*y).subs({x:pi, y:2})1 + 2*pi>>> (1 + x*y).subs([(x, pi), (y, 2)])1 + 2*pi>>> reps = [(y, x**2), (x, 2)]>>> (x + y).subs(reps)6>>> (x + y).subs(reversed(reps))x**2 + 2>>> (x**2 + x**4).subs(x**2, y)y**2 + y>>> (x**2 + x**4).xreplace({x**2: y})x**4 + y>>> (x/y).subs([(x, 0), (y, 0)])0>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)nan>>> ((x + y)/y).subs({x + y: y, y: x + y})1>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)y/(x + y)>>> limit(x**3 - 3*x, x, oo)oo

调用方式:[subs(*args, **kwargs)]

代数

局部的代数式展开,使用apart(expr, x):

In [1]: 1/( (x+2)*(x+1) )Out[1]:       1───────────────(2 + x)*(1 + x)In [2]: apart(1/( (x+2)*(x+1) ), x)Out[2]:  1       1───── - ─────1 + x   2 + xIn [3]: (x+1)/(x-1)Out[3]:-(1 + x)────────  1 - xIn [4]: apart((x+1)/(x-1), x)Out[4]:      21 - ─────    1 - x

代数式的合并

(相当于展开的逆运算),使用together(expr, x):

In [7]: together(1/x + 1/y + 1/z)Out[7]:x*y + x*z + y*z───────────────    x*y*zIn [8]: together(apart((x+1)/(x-1), x), x)Out[8]:-1 - x──────1 - xIn [9]: together(apart(1/( (x+2)*(x+1) ), x), x)Out[9]:      1───────────────(2 + x)*(1 + x)

微积分

极限

在sympy中极限容易求出,它们遵循极限语法 limit(function, variable, point) ,所以计算x->0时f(x)的极限,即limit(f, x, 0):

>>>from sympy import *>>>x=Symbol("x")>>>limit(sin(x)/x, x, 0)1>>>limit(x, x, oo)oo>>>limit(1/x, x, oo)0>>>limit(x**x, x, 0)1

有一些特殊的极限的例子,可以阅读文件test_demidovich.py

微分

可以对任意SymPy表达式微分。diff(func, var)。例如:

>>>from sympy import *>>>x = Symbol(‘x‘)>>>diff(sin(x), x)cos(x)>>>diff(sin(2*x), x)2*cos(2*x)>>>diff(tan(x), x)1 + tan(x)**2

可以通过以下验证:

>>>limit((tan(x+y)-tan(x))/y, y, 0)1 + tan(x)**2

计算高阶微分 diff(func, var, n) :

>>>diff(sin(2*x), x, 1)2*cos(2*x)>>>diff(sin(2*x), x, 2)-4*sin(2*x)>>>diff(sin(2*x), x, 3)-8*cos(2*x)

级数展开

函数 series(var, point, order):

>>>from sympy import *>>>x = Symbol(‘x‘)>>>cos(x).series(x, 0, 10)1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**10)>>>(1/cos(x)).series(x, 0, 10)1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + 277*x**8/8064 + O(x**10)

积分

SymPy支持不定积分,超越函数与特殊函数的定积分。SymPy有力的扩展Risch-Norman 算法和模型匹配算法。

>>>from sympy import *>>>x, y = symbols(‘xy‘)

初等函数:

>>>integrate(6*x**5, x)x**6>>>integrate(sin(x), x)-cos(x)>>>integrate(log(x), x)-x + x*log(x)>>>integrate(2*x + sinh(x), x)cosh(x) + x**2

特殊函数:

>>>integrate(exp(-x**2)*erf(x), x)pi**(1/2)*erf(x)**2/4

定积分:

>>>integrate(x**3, (x, -1, 1))0>>integrate(sin(x), (x, 0, pi/2))1>>>integrate(cos(x), (x, -pi/2, pi/2))2

一些广义积分也可以被支持:

>>>integrate(exp(-x), (x, 0, oo))1>>>integrate(log(x), (x, 0, 1))-1

复数

>>>from sympy import Symbol, exp, I>>>x = Symbol("x")>>>exp(I*x).expand()exp(I*x)>>>exp(I*x).expand(complex=True)I*exp(-im(x))*sin(re(x)) + cos(re(x))*exp(-im(x))>>>x = Symbol("x", real=True)>>>exp(I*x).expand(complex=True)I*sin(x) + cos(x)

函数

三角函数::

In [1]: sin(x+y).expand(trig=True)Out[1]: cos(x)*sin(y) + cos(y)*sin(x)In [2]: cos(x+y).expand(trig=True)Out[2]: cos(x)*cos(y) - sin(x)*sin(y)In [3]: sin(I*x)Out[3]: I*sinh(x)In [4]: sinh(I*x)Out[4]: I*sin(x)In [5]: asinh(I)Out[5]:π*I─── 2In [6]: asinh(I*x)Out[6]: I*asin(x)In [15]: sin(x).series(x, 0, 10)Out[15]:     3     5     7       9    x     x     x       xx - ── + ─── - ──── + ────── + O(x**10)    6    120   5040   362880In [16]: sinh(x).series(x, 0, 10)Out[16]:     3     5     7       9    x     x     x       xx + ── + ─── + ──── + ────── + O(x**10)    6    120   5040   362880In [17]: asin(x).series(x, 0, 10)Out[17]:     3      5      7       9    x    3*x    5*x    35*xx + ── + ──── + ──── + ───── + O(x**10)    6     40    112     1152In [18]: asinh(x).series(x, 0, 10)Out[18]:     3      5      7       9    x    3*x    5*x    35*xx - ── + ──── - ──── + ───── + O(x**10)    6     40    112     1152

球谐函数:

In [1]: from sympy.abc import theta, phiIn [2]: Ylm(1, 0, theta, phi)Out[2]:     ————╲╱ 3 *cos(θ)────────────        ——  2*╲╱ πIn [3]: Ylm(1, 1, theta, phi)Out[3]:    ——            I*φ-╲╱ 6   *│sin(θ)│*?────────────────────           ——      4*╲╱ πIn [4]: Ylm(2, 1, theta, phi)Out[4]:   ———                  I*φ-╲╱ 30  *│sin(θ)│*cos(θ)*?────────────────────────────                ——          4*╲╱ π

阶乘和伽玛函数:

In [1]: x = Symbol("x")In [2]: y = Symbol("y", integer=True)In [3]: factorial(x)Out[3]: Γ(1 + x)In [4]: factorial(y)Out[4]: y!In [5]: factorial(x).series(x, 0, 3)Out[5]:                    2           2    2  2                   x *EulerGamma    π *x1 - x*EulerGamma + ────────────── + ───── + O(x**3)                         2            12

Zeta函数:

In [18]: zeta(4, x)Out[18]: ζ(4, x)In [19]: zeta(4, 1)Out[19]:  4π──90In [20]: zeta(4, 2)Out[20]:       4     π-1 + ──     90In [21]: zeta(4, 3)Out[21]:         4  17   π- ── + ──  16   90

多项式

In [1]: chebyshevt(2, x)Out[1]:        2-1 + 2*xIn [2]: chebyshevt(4, x)Out[2]:       2      41 - 8*x  + 8*xIn [3]: legendre(2, x)Out[3]:          2       3*x-1/2 + ────       2In [4]: legendre(8, x)Out[4]:          2         4         6         835   315*x    3465*x    3003*x    6435*x─── - ────── + ─────── - ─────── + ───────128     32        64        32       128In [5]: assoc_legendre(2, 1, x)Out[5]:            —————         ╱     2-3*x*╲╱  1 - xIn [6]: assoc_legendre(2, 2, x)Out[6]:      23 - 3*xIn [7]: hermite(3, x)Out[7]:           3-12*x + 8*x

微分方程

在isympy中:

In [4]: f(x).diff(x, x) + f(x)     #注意在使用输入该命令之前,一定要声明f=Function(‘f‘)Out[4]:  2 d─────(f(x)) + f(x)dx dxIn [5]: dsolve(f(x).diff(x, x) + f(x), f(x))Out[5]: C?*sin(x) + C?*cos(x)

代数方程

在isympy中:

In [7]: solve(x**4 - 1, x)Out[7]: [i, 1, -1, -i]In [8]: solve([x + 5*y - 2, -3*x + 6*y - 15], [x, y])Out[8]: {y: 1, x: -3}

线性代数

矩阵

矩阵由矩阵类创立建:

>>>from sympy import Matrix>>>Matrix([[1,0], [0,1]])[1, 0][0, 1]

不只是数值矩阵,亦可为代数矩阵,即矩阵中存在符号:

>>>x = Symbol(‘x‘)>>>y = Symbol(‘y‘)>>>A = Matrix([[1,x], [y,1]])>>>A[1, x][y, 1]>>>A**2[1 + x*y,     2*x][    2*y, 1 + x*y]

关于矩阵更多的例子,请看线性代数教程。

系数匹配

使用 .match()方法,引用Wild类,来执行表达式的匹配。该方法会返回一个字典。

>>>from sympy import *>>>x = Symbol(‘x‘)>>>p = Wild(‘p‘)>>>(5*x**2).match(p*x**2){p_: 5}>>>q = Wild(‘q‘)>>>(x**2).match(p*x**q){p_: 1, q_: 2}

如果匹配不成功,则返回None:

>>>print (x+1).match(p**x)None

可以使用Wild类的‘exclude’参数(排除参数),排除不需要和无意义的匹配结果,来保证结论中的显示是唯一的:

>>>x = Symbol(‘x‘)>>>p = Wild(‘p‘, exclude=[1,x])>>>print (x+1).match(x+p) # 1 is excludedNone>>>print (x+1).match(p+1) # x is excludedNone>>>print (x+1).match(x+2+p) # -1 is not excluded{p_: -1}

打印输出

标准

str(expression)返回如下:

>>>from sympy import Integral>>>from sympy.abc import x>>>print x**2x**2>>>print 1/x1/x>>>print Integral(x**2, x)Integral(x**2, x)

Pretty Printing

用pprint函数可以输出不错的ascii艺术:

>>>from sympy import Integral, pprint>>>from sympy.abc import x>>>pprint(x**2) #doctest: +NORMALIZE_WHITESPACE2x>>>pprint(1/x)1-x>>>pprint(Integral(x**2, x)) /||  2| x  dx|/

[Pretty PrintingWiki]
提示:在python解释器中,为使pretty printing为默认输出,使用:

$ pythonPython 2.5.2 (r252:60911, Jun 25 2008, 17:58:32)[GCC 4.3.1] on linux2Type "help", "copyright", "credits" or "license" for more information.>>> from sympy import *>>> import sys>>> sys.displayhook = pprint>>> var("x")x>>> x**3/33x--3>>> Integral(x**2, x) #doctest: +NORMALIZE_WHITESPACE/||  2| x  dx|/

Python printing

>>>from sympy.printing.python import python>>>from sympy import Integral>>>from sympy.abc import x>>>print python(x**2)x = Symbol(‘x‘)e = x**2>>>print python(1/x)x = Symbol(‘x‘)e = 1/x>>>print python(Integral(x**2, x))x = Symbol(‘x‘)e = Integral(x**2, x)

LaTeX printing

>>>from sympy import Integral, latex>>>from sympy.abc import x>>>latex(x**2)$x^{2}$>>>latex(1/x)$\frac{1}{x}$>>>latex(Integral(x**2, x))$\int x^{2}\,dx$

MathML

>>>from sympy.printing.mathml import mathml>>>from sympy import Integral, latex>>>from sympy.abc import x>>>print mathml(x**2)<apply><power/><ci>x</ci><cn>2</cn></apply>>>>print mathml(1/x)<apply><power/><ci>x</ci><cn>-1</cn></apply>

Pyglet

>>>from sympy import Integral, preview>>>from sympy.abc import x>>>preview(Integral(x**2, x)) #doctest:+SKIP
注解

Isympy默认调用pprint,所以这就是为什么看到pretty printing为默认的。

有一个打印的有效模块,sympy.printing。用这个模块实现其他的打印:

  • pretty(expr), pretty_print(expr), pprint(expr): 分别返回或者输出,,表达式的漂亮描述。这是相同
  • latex(expr), print_latex(expr):分别返回或者输出,LaTex描写的表达式
  • mathml(expr), print_mathml(expr):分别返回或者输出,MathML描写的表达式
  • print_gtk(expr): 表达式打印到Gtkmathview , 这是一个GTK小配件显示MathML代码。Gtkmathview程序是必须的。

相关链接

  • 本文转载自于:http://blog.csdn.net/pipisorry/article/details/39123247
  • Sympy源码库:https://github.com/sympy/sympy
  • SymPy’s documentation:http://docs.sympy.org/latest/index.html
  • SymPy-符号运算好帮手:http://hyry.dip.jp/tech/book/page/scipy/sympy.html
  • SymPy Tutorial(译):http://reverland.org/python/2012/08/30/sympy-tutorial/

SymPy库常用函数