首页 > 代码库 > [原创] 毕设---在myeclipes中安装Hadoop开发插件

[原创] 毕设---在myeclipes中安装Hadoop开发插件

1、安装Hadoop开发插件

hadoop安装包contrib/目录下有个插件hadoop-0.20.2-eclipse-plugin.jar,拷贝到myeclipse根目录下/dropins目录下。

2、 启动myeclipse,打开Perspective:

【Window】->【Open Perspective】->【Other...】->【Map/Reduce】->【OK】

3、 打开一个View:

【Window】->【Show View】->【Other...】->【MapReduce Tools】->【Map/Reduce Locations】->【OK】

4、 添加Hadoop location:

location name: 我填写的是:localhost.
Map/Reduce Master 这个框里
Host:就是jobtracker 所在的集群机器,这里写localhost
Hort:就是jobtracker 的port,这里写的是9999
这两个参数就是mapred-site.xml里面mapred.job.tracker里面的ip和port
DFS Master 这个框里
Host:就是namenode所在的集群机器,这里写localhost
Port:就是namenode的port,这里写8888
这两个参数就是core-site.xml里面fs.default.name里面的ip和port
(Use M/R master host,这个复选框如果选上,就默认和Map/Reduce Master这个框里的host一样,如果不选择,就可以自己定义输入,这里jobtracker 和namenode在一个机器上,所以是一样的,就勾选上)

user name:这个是连接hadoop的用户名,因为我是用lsq用户安装的hadoop,而且没建立其他的用户,所以就用lsq。下面的不用填写。
然后点击finish按钮,此时,这个视图中就有多了一条记录。

重启myeclipse并重新编辑刚才建立的那个连接记录,现在我们编辑advance parameters tab页
(重启编辑advance parameters tab页原因:在新建连接的时候,这个advance paramters tab页面的一些属性会显示不出来,显示不出来也就没法设置,所以必须重启一下eclipse再进来编辑才能看到)

这里大部分的属性都已经自动填写上了,其实就是把core-defaulte.xml、hdfs-defaulte.xml、mapred-defaulte.xml里面的一些配置属性展示出来。因为在安装hadoop的时候,其site系列配置文件里有改动,所以这里也要弄成一样的设置。主要关注的有以下属性:
fs.defualt.name:这个在General tab页已经设置了
mapred.job.tracker:这个在General tab页也设置了
dfs.replication:这个这里默认是3,因为我在hdfs-site.xml里面设置成了1,所以这里也要设置成1
hadoop.job.ugi:这里要填写:lsq,Tardis,逗号前面的是连接的hadoop的用户,逗号后面就写死Tardis(这个属性不知道我怎么没有...)
然后点击finish,然后就连接上了(先要启动sshd服务,启动hadoop进程),连接上的标志如图:

5、新建Map/Reduce Project:

【File】->【New】->【Project...】->【Map/Reduce】->【Map/Reduce Project】->【Project name: WordCount】->【Configure Hadoop install directory...】->【Hadoop installation directory: D:\cygwin\home\lsq\hadoop-0.20.2】->【Apply】->【OK】->【Next】->【Allow output folders for source folders】->【Finish】

6、新建WordCount类:

添加/编写源代码:

D:\cygwin\home\lsq\hadoop-0.20.2/src/examples/org/apache/hadoop/examples/WordCount.java

package org.apache.hadoop.examples;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,

Context context

) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

if (otherArgs.length != 2) {

System.err.println("Usage: wordcount <in> <out>");

System.exit(2);

}

Job job = new Job(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

7、上传模拟数据文件夹。

为了运行程序,需要一个输入的文件夹和输出的文件夹。输出文件夹,在程序运行完成后会自动生成。我们需要给程序一个输入文件夹。

(1)、在当前目录(如hadoop安装目录)下新建文件夹input,并在文件夹下新建两个文件file1、file2,这两个文件内容分别如下:

file1

Hello World Bye World
file2
Hello Hadoop Goodbye Hadoop

(2)、.将文件夹input上传到分布式文件系统中。
在已经启动Hadoop守护进程终端中cd 到hadoop安装目录,运行下面命令:
bin/hadoop fs -put input in
8、 配置运行参数:

①在新建的项目WordCount,点击WordCount.java,右键-->Run As-->Run Configurations
②在弹出的Run Configurations对话框中,点Java Application,右键-->New,这时会新建一个application名为WordCount
③配置运行参数,点Arguments,在Program arguments中输入“你要传给程序的输入文件夹和你要求程序将计算结果保存的文件夹”,如:

(如果运行时报java.lang.OutOfMemoryError: Java heap space 配置VM arguments(在Program arguments下)

-Xms512m -Xmx1024m -XX:MaxPermSize=256m


8、点击Run,运行程序

点击Run,运行程序,过段时间将运行完成,等运行结束后,可以在终端中用命令如下,查看是否生成文件夹output:

bin/hadoop fs -ls

用下面命令查看生成的文件内容:

bin/hadoop fs -cat output/*

如果显示如下,说明已经成功在myeclipse下运行第一个MapReduce程序了。

Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2

[原创] 毕设---在myeclipes中安装Hadoop开发插件