首页 > 代码库 > MLlib之LR算法源码学习

MLlib之LR算法源码学习


/**
* :: DeveloperApi :: * GeneralizedLinearModel (GLM) represents a model trained using * GeneralizedLinearAlgorithm. GLMs consist of a weight vector and * an intercept. * * @param weights Weights computed for every feature. * @param intercept Intercept computed for this model. */@DeveloperApiabstract class GeneralizedLinearModel(val weights: Vector, val intercept: Double // 主构造器) extends Serializable { /** * Predict the result given a data point and the weights learned. * * @param dataMatrix Row vector containing the features for this data point * @param weightMatrix Column vector containing the weights of the model * @param intercept Intercept of the model. */ protected def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double): Double // 预测所属标签 /** * Predict values for the given data set using the model trained. * * @param testData RDD representing data points to be predicted * @return RDD[Double] where each entry contains the corresponding prediction */ def predict(testData: RDD[Vector]): RDD[Double] = { // A small optimization to avoid serializing the entire model. Only the weightsMatrix // and intercept is needed. val localWeights = weights val bcWeights = testData.context.broadcast(localWeights) val localIntercept = intercept testData.mapPartitions { iter => val w = bcWeights.value //broadcast调用 read-only(类似Hadoop -》 DistributedCache) iter.map(v => predictPoint(v, w, localIntercept)) } } /** * Predict values for a single data point using the model trained. * * @param testData array representing a single data point * @return Double prediction from the trained model */ def predict(testData: Vector): Double = { predictPoint(testData, weights, intercept) }}

// 根据训练数据集得到的weights来预测新的数据点的分类

/** * Regression model trained using LinearRegression. * * @param weights Weights computed for every feature. * @param intercept Intercept computed for this model. */class LinearRegressionModel (    override val weights: Vector,    override val intercept: Double)  extends GeneralizedLinearModel(weights, intercept) with RegressionModel with Serializable {  override protected def predictPoint(      dataMatrix: Vector,      weightMatrix: Vector,      intercept: Double): Double = {    weightMatrix.toBreeze.dot(dataMatrix.toBreeze) + intercept //两向量点乘v1 = [a1, b1], v2 = [a2, b2], v1.v2 = a1 * a2 + b1 * b2  }}

 

 

import org.apache.spark.mllib.linalg.{Vectors, Vector}import org.apache.spark.mllib.util.NumericParserimport org.apache.spark.SparkException/** * Class that represents the features and labels of a data point. * * @param label Label for this data point. * @param features List of features for this data point. */case class LabeledPoint(label: Double, features: Vector /*主构造器*/) {  override def toString: String = {    "(%s,%s)".format(label, features)  }}/** * Parser for [[org.apache.spark.mllib.regression.LabeledPoint]]. */object LabeledPoint {  /**   * Parses a string resulted from `LabeledPoint#toString` into   * an [[org.apache.spark.mllib.regression.LabeledPoint]].   */  def parse(s: String): LabeledPoint = {    if (s.startsWith("(")) {      NumericParser.parse(s) match {        case Seq(label: Double, numeric: Any) =>          LabeledPoint(label, Vectors.parseNumeric(numeric))        case other =>          throw new SparkException(/*字符串插值*/s"Cannot parse $other.")      }    } 
else { // dense format used before v1.0 val parts = s.split(‘,‘) val label = java.lang.Double.parseDouble(parts(0)) val features = Vectors.dense(parts(1).trim().split(‘ ‘).map(java.lang.Double.parseDouble)) LabeledPoint(label, features) } }}

 

/** * :: DeveloperApi :: * GeneralizedLinearAlgorithm implements methods to train a Generalized Linear Model (GLM). * This class should be extended with an Optimizer to create a new GLM. */@DeveloperApiabstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel]  extends Logging with Serializable {  protected val validators: Seq[RDD[LabeledPoint] => Boolean] = List()  /** The optimizer to solve the problem. */  def optimizer: Optimizer  /** Whether to add intercept (default: false). */  protected var addIntercept: Boolean = false  protected var validateData: Boolean = true  /**   * Whether to perform feature scaling before model training to reduce the condition numbers   * which can significantly help the optimizer converging faster. The scaling correction will be   * translated back to resulting model weights, so it‘s transparent to users.   * Note: This technique is used in both libsvm and glmnet packages. Default false.   */  private var useFeatureScaling = false  /**   * Set if the algorithm should use feature scaling to improve the convergence during optimization.   */  private[mllib] def setFeatureScaling(useFeatureScaling: Boolean): this.type = {    this.useFeatureScaling = useFeatureScaling    this  }  /**   * Create a model given the weights and intercept   */  protected def createModel(weights: Vector, intercept: Double): M  /**   * Set if the algorithm should add an intercept. Default false.   * We set the default to false because adding the intercept will cause memory allocation.   */  def setIntercept(addIntercept: Boolean): this.type = {    this.addIntercept = addIntercept    this  }  /**   * Set if the algorithm should validate data before training. Default true.   */  def setValidateData(validateData: Boolean): this.type = {    this.validateData =http://www.mamicode.com/ validateData    this  }  /**   * Run the algorithm with the configured parameters on an input   * RDD of LabeledPoint entries.   */  def run(input: RDD[LabeledPoint]): M = {    val numFeatures: Int = input.first().features.size    val initialWeights = Vectors.dense(new Array[Double](numFeatures)) //初始化为0向量    run(input, initialWeights)  }  /**   * Run the algorithm with the configured parameters on an input RDD   * of LabeledPoint entries starting from the initial weights provided.   */  def run(input: RDD[LabeledPoint], initialWeights: Vector): M = {    // Check the data properties before running the optimizer    if (validateData && !validators.forall(func => func(input))) {      throw new SparkException("Input validation failed.")    }    /**     * Scaling columns to unit variance as a heuristic to reduce the condition number:     *     * During the optimization process, the convergence (rate) depends on the condition number of     * the training dataset. Scaling the variables often reduces this condition number     * heuristically, thus improving the convergence rate. Without reducing the condition number,     * some training datasets mixing the columns with different scales may not be able to converge.     *     * GLMNET and LIBSVM packages perform the scaling to reduce the condition number, and return     * the weights in the original scale.     * See page 9 in http://cran.r-project.org/web/packages/glmnet/glmnet.pdf     *     * Here, if useFeatureScaling is enabled, we will standardize the training features by dividing     * the variance of each column (without subtracting the mean), and train the model in the     * scaled space. Then we transform the coefficients from the scaled space to the original scale     * as GLMNET and LIBSVM do.     *     * Currently, it‘s only enabled in LogisticRegressionWithLBFGS     */    val scaler = if (useFeatureScaling) {      (new StandardScaler).fit(input.map(x => x.features))    } else {      null    }    // Prepend an extra variable consisting of all 1.0‘s for the intercept.    val data = http://www.mamicode.com/if (addIntercept) {      if(useFeatureScaling) {        input.map(labeledPoint =>          (labeledPoint.label, appendBias(scaler.transform(labeledPoint.features))))      } else {        input.map(labeledPoint => (labeledPoint.label, /*加入惩罚函数*/appendBias(labeledPoint.features)))      }    } else {      if (useFeatureScaling) {        input.map(labeledPoint => (labeledPoint.label, scaler.transform(labeledPoint.features)))      } else {        input.map(labeledPoint => (labeledPoint.label, labeledPoint.features))      }    }    val initialWeightsWithIntercept = if (addIntercept) {      appendBias(initialWeights)    } else {      initialWeights    }  
//Very important
val weightsWithIntercept
= optimizer.optimize(data, initialWeightsWithIntercept) val intercept = if (addIntercept) weightsWithIntercept(weightsWithIntercept.size - 1) else 0.0 var weights = if (addIntercept) { Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)) } else { weightsWithIntercept } /** * The weights and intercept are trained in the scaled space; we‘re converting them back to * the original scale. * * Math shows that if we only perform standardization without subtracting means, the intercept * will not be changed. w_i = w_i‘ / v_i where w_i‘ is the coefficient in the scaled space, w_i * is the coefficient in the original space, and v_i is the variance of the column i. */ if (useFeatureScaling) { weights = scaler.transform(weights) } createModel(weights, intercept) }}
LinearRegressionWithSGD类主要接收外部数据集、算法参数等输入进行训练得到一个逻辑回归模型LogisticRegressionModel

 接收的输入参数包括:

    input:输入数据集合,分类标签lable只能是1.0和0.0两种,feature为double类型

    numIterations:迭代次数,默认为100

    stepSize:迭代步伐大小,默认为1.0

    miniBatchFraction:每次迭代参与计算的样本比例,默认为1.0

    initialWeights:weight向量初始值,默认为0向量

/** * Train a linear regression model with no regularization using Stochastic Gradient Descent. * This solves the least squares regression formulation *              f(weights) = 1/n ||A weights-y||^2 * (which is the mean squared error). * Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with * its corresponding right hand side label y. * See also the documentation for the precise formulation. */class LinearRegressionWithSGD private[mllib] (    private var stepSize: Double,    private var numIterations: Int,    private var miniBatchFraction: Double)  extends GeneralizedLinearAlgorithm[LinearRegressionModel] with Serializable {  private val gradient = new LeastSquaresGradient()  private val updater = new SimpleUpdater()  override val optimizer = new GradientDescent(gradient, updater)    .setStepSize(stepSize)    .setNumIterations(numIterations)    .setMiniBatchFraction(miniBatchFraction)  /**   * Construct a LinearRegression object with default parameters: {stepSize: 1.0,   * numIterations: 100, miniBatchFraction: 1.0}.   */  def this() = this(1.0, 100, 1.0)  override protected[mllib] def createModel(weights: Vector, intercept: Double) = {    new LinearRegressionModel(weights, intercept)  }}/** * Top-level methods for calling LinearRegression. */object LinearRegressionWithSGD {  /**   * Train a Linear Regression model given an RDD of (label, features) pairs. We run a fixed number   * of iterations of gradient descent using the specified step size. Each iteration uses   * `miniBatchFraction` fraction of the data to calculate a stochastic gradient. The weights used   * in gradient descent are initialized using the initial weights provided.   *   * @param input RDD of (label, array of features) pairs. Each pair describes a row of the data   *              matrix A as well as the corresponding right hand side label y   * @param numIterations Number of iterations of gradient descent to run.   * @param stepSize Step size to be used for each iteration of gradient descent.   * @param miniBatchFraction Fraction of data to be used per iteration.   * @param initialWeights Initial set of weights to be used. Array should be equal in size to   *        the number of features in the data.   */  def train(      input: RDD[LabeledPoint],      numIterations: Int,      stepSize: Double,      miniBatchFraction: Double,      initialWeights: Vector): LinearRegressionModel = {    new LinearRegressionWithSGD(stepSize, numIterations, miniBatchFraction)      .run(input, initialWeights)  }  /**   * Train a LinearRegression model given an RDD of (label, features) pairs. We run a fixed number   * of iterations of gradient descent using the specified step size. Each iteration uses   * `miniBatchFraction` fraction of the data to calculate a stochastic gradient.   *   * @param input RDD of (label, array of features) pairs. Each pair describes a row of the data   *              matrix A as well as the corresponding right hand side label y   * @param numIterations Number of iterations of gradient descent to run.   * @param stepSize Step size to be used for each iteration of gradient descent.   * @param miniBatchFraction Fraction of data to be used per iteration.   */  def train(      input: RDD[LabeledPoint],      numIterations: Int,      stepSize: Double,      miniBatchFraction: Double): LinearRegressionModel = {    new LinearRegressionWithSGD(stepSize, numIterations, miniBatchFraction).run(input)  }  /**   * Train a LinearRegression model given an RDD of (label, features) pairs. We run a fixed number   * of iterations of gradient descent using the specified step size. We use the entire data set to   * compute the true gradient in each iteration.   *   * @param input RDD of (label, array of features) pairs. Each pair describes a row of the data   *              matrix A as well as the corresponding right hand side label y   * @param stepSize Step size to be used for each iteration of Gradient Descent.   * @param numIterations Number of iterations of gradient descent to run.   * @return a LinearRegressionModel which has the weights and offset from training.   */  def train(      input: RDD[LabeledPoint],      numIterations: Int,      stepSize: Double): LinearRegressionModel = {    train(input, numIterations, stepSize, 1.0)  }  /**   * Train a LinearRegression model given an RDD of (label, features) pairs. We run a fixed number   * of iterations of gradient descent using a step size of 1.0. We use the entire data set to   * compute the true gradient in each iteration.   *   * @param input RDD of (label, array of features) pairs. Each pair describes a row of the data   *              matrix A as well as the corresponding right hand side label y   * @param numIterations Number of iterations of gradient descent to run.   * @return a LinearRegressionModel which has the weights and offset from training.   */  def train(      input: RDD[LabeledPoint],      numIterations: Int): LinearRegressionModel = {    train(input, numIterations, 1.0, 1.0)  }}
(梯度下降 or
最小二乘法求导,计算梯度)

/**
* :: DeveloperApi :: * Class used to compute the gradient for a loss function, given a single data point. */@DeveloperApiabstract class Gradient extends Serializable { /** * Compute the gradient and loss given the features of a single data point. * * @param data features for one data point * @param label label for this data point * @param weights weights/coefficients corresponding to features * * @return (gradient: Vector, loss: Double) */ def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) /** * Compute the gradient and loss given the features of a single data point, * add the gradient to a provided vector to avoid creating new objects, and return loss. * * @param data features for one data point * @param label label for this data point * @param weights weights/coefficients corresponding to features * @param cumGradient the computed gradient will be added to this vector * * @return loss */ def compute(data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double}/** * :: DeveloperApi :: * Compute gradient and loss for a logistic loss function, as used in binary classification. * See also the documentation for the precise formulation. */@DeveloperApiclass LogisticGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val margin = -1.0 * dot(data, weights) val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label val gradient = data.copy scal(gradientMultiplier, gradient) val loss = if (label > 0) { math.log1p(math.exp(margin)) // log1p is log(1+p) but more accurate for small p } else { math.log1p(math.exp(margin)) - margin } (gradient, loss) } override def compute( data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double = { val margin = -1.0 * dot(data, weights) val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label axpy(gradientMultiplier, data, cumGradient) if (label > 0) { math.log1p(math.exp(margin)) } else { math.log1p(math.exp(margin)) - margin } }}/** * :: DeveloperApi :: * Compute gradient and loss for a Least-squared loss function, as used in linear regression. * This is correct for the averaged least squares loss function (mean squared error) * L = 1/n ||A weights-y||^2 * See also the documentation for the precise formulation. */@DeveloperApiclass LeastSquaresGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val diff = dot(data, weights) - label val loss = diff * diff val gradient = data.copy scal(2.0 * diff, gradient) (gradient, loss) } override def compute( data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double = { val diff = dot(data, weights) - label axpy(2.0 * diff, data, cumGradient) diff * diff }}/** * :: DeveloperApi :: * Compute gradient and loss for a Hinge loss function, as used in SVM binary classification. * See also the documentation for the precise formulation. * NOTE: This assumes that the labels are {0,1} */@DeveloperApiclass HingeGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val dotProduct = dot(data, weights) // Our loss function with {0, 1} labels is max(0, 1 - (2y – 1) (f_w(x))) // Therefore the gradient is -(2y - 1)*x val labelScaled = 2 * label - 1.0 if (1.0 > labelScaled * dotProduct) { val gradient = data.copy scal(-labelScaled, gradient) (gradient, 1.0 - labelScaled * dotProduct) } else { (Vectors.sparse(weights.size, Array.empty, Array.empty), 0.0) } } override def compute( data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double = { val dotProduct = dot(data, weights) // Our loss function with {0, 1} labels is max(0, 1 - (2y – 1) (f_w(x))) // Therefore the gradient is -(2y - 1)*x val labelScaled = 2 * label - 1.0 if (1.0 > labelScaled * dotProduct) { axpy(-labelScaled, data, cumGradient) 1.0 - labelScaled * dotProduct } else { 0.0 } }}

 

Updater类负责weight的迭代更新计算,包含了SimpleUpdater、L1Updater、SquaredL2Update
/** * :: DeveloperApi :: * Class used to perform steps (weight update) using Gradient Descent methods. * * For general minimization problems, or for regularized problems of the form *         min  L(w) + regParam * R(w), * the compute function performs the actual update step, when given some * (e.g. stochastic) gradient direction for the loss L(w), * and a desired step-size (learning rate). * * The updater is responsible to also perform the update coming from the * regularization term R(w) (if any regularization is used). */@DeveloperApiabstract class Updater extends Serializable {  /**   * Compute an updated value for weights given the gradient, stepSize, iteration number and   * regularization parameter. Also returns the regularization value regParam * R(w)   * computed using the *updated* weights.   *   * @param weightsOld - Column matrix of size dx1 where d is the number of features.   * @param gradient - Column matrix of size dx1 where d is the number of features.   * @param stepSize - step size across iterations   * @param iter - Iteration number   * @param regParam - Regularization parameter   *   * @return A tuple of 2 elements. The first element is a column matrix containing updated weights,   *         and the second element is the regularization value computed using updated weights.   */  def compute(      weightsOld: Vector,      gradient: Vector,      stepSize: Double,      iter: Int,      regParam: Double): (Vector, Double)}/** * :: DeveloperApi :: * A simple updater for gradient descent *without* any regularization. * Uses a step-size decreasing with the square root of the number of iterations. */@DeveloperApiclass SimpleUpdater extends Updater {  override def compute(      weightsOld: Vector,      gradient: Vector,      stepSize: Double,      iter: Int,      regParam: Double): (Vector, Double) = {    val thisIterStepSize = stepSize / math.sqrt(iter)    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)    (Vectors.fromBreeze(brzWeights), 0)  }}/** * :: DeveloperApi :: * Updater for L1 regularized problems. *          R(w) = ||w||_1 * Uses a step-size decreasing with the square root of the number of iterations. * Instead of subgradient of the regularizer, the proximal operator for the * L1 regularization is applied after the gradient step. This is known to * result in better sparsity of the intermediate solution. * * The corresponding proximal operator for the L1 norm is the soft-thresholding * function. That is, each weight component is shrunk towards 0 by shrinkageVal. * * If w >  shrinkageVal, set weight component to w-shrinkageVal. * If w < -shrinkageVal, set weight component to w+shrinkageVal. * If -shrinkageVal < w < shrinkageVal, set weight component to 0. * * Equivalently, set weight component to signum(w) * max(0.0, abs(w) - shrinkageVal) */@DeveloperApiclass L1Updater extends Updater {  override def compute(      weightsOld: Vector,      gradient: Vector,      stepSize: Double,      iter: Int,      regParam: Double): (Vector, Double) = {    val thisIterStepSize = stepSize / math.sqrt(iter)    // Take gradient step    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)    // Apply proximal operator (soft thresholding)    val shrinkageVal = regParam * thisIterStepSize    var i = 0    while (i < brzWeights.length) {      val wi = brzWeights(i)      brzWeights(i) = signum(wi) * max(0.0, abs(wi) - shrinkageVal)      i += 1    }    (Vectors.fromBreeze(brzWeights), brzNorm(brzWeights, 1.0) * regParam)  }}/** * :: DeveloperApi :: * Updater for L2 regularized problems. *          R(w) = 1/2 ||w||^2 * Uses a step-size decreasing with the square root of the number of iterations. */@DeveloperApiclass SquaredL2Updater extends Updater {  override def compute(      weightsOld: Vector,      gradient: Vector,      stepSize: Double,      iter: Int,      regParam: Double): (Vector, Double) = {    // add up both updates from the gradient of the loss (= step) as well as    // the gradient of the regularizer (= regParam * weightsOld)    // w‘ = w - thisIterStepSize * (gradient + regParam * w)    // w‘ = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient    val thisIterStepSize = stepSize / math.sqrt(iter)    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector    brzWeights :*= (1.0 - thisIterStepSize * regParam)    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)    val norm = brzNorm(brzWeights, 2.0)    (Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm)  }}

 

 

/** * :: DeveloperApi :: * Trait for optimization problem solvers. */@DeveloperApitrait Optimizer extends Serializable {  /**   * Solve the provided convex optimization problem.   */  def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector}

 

GradientDescent(梯度下降算法)
/** * Class used to solve an optimization problem using Gradient Descent. * @param gradient Gradient function to be used. * @param updater Updater to be used to update weights after every iteration. */class GradientDescent private[mllib] (private var gradient: Gradient, private var updater: Updater)  extends Optimizer with Logging {  private var stepSize: Double = 1.0  private var numIterations: Int = 100  private var regParam: Double = 0.0  private var miniBatchFraction: Double = 1.0  /**   * Set the initial step size of SGD for the first step. Default 1.0.   * In subsequent steps, the step size will decrease with stepSize/sqrt(t)   */  def setStepSize(step: Double): this.type = {    this.stepSize = step    this  }  /**   * :: Experimental ::   * Set fraction of data to be used for each SGD iteration.   * Default 1.0 (corresponding to deterministic/classical gradient descent)   */  @Experimental  def setMiniBatchFraction(fraction: Double): this.type = {    this.miniBatchFraction = fraction    this  }  /**   * Set the number of iterations for SGD. Default 100.   */  def setNumIterations(iters: Int): this.type = {    this.numIterations = iters    this  }  /**   * Set the regularization parameter. Default 0.0.   */  def setRegParam(regParam: Double): this.type = {    this.regParam = regParam    this  }  /**   * Set the gradient function (of the loss function of one single data example)   * to be used for SGD.   */  def setGradient(gradient: Gradient): this.type = {    this.gradient = gradient    this  }  /**   * Set the updater function to actually perform a gradient step in a given direction.   * The updater is responsible to perform the update from the regularization term as well,   * and therefore determines what kind or regularization is used, if any.   */  def setUpdater(updater: Updater): this.type = {    this.updater = updater    this  }  /**   * :: DeveloperApi ::   * Runs gradient descent on the given training data.   * @param data training data   * @param initialWeights initial weights   * @return solution vector   */  @DeveloperApi  def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector = {    val (weights, _) = GradientDescent.runMiniBatchSGD(      data,      gradient,      updater,      stepSize,      numIterations,      regParam,      miniBatchFraction,      initialWeights)    weights  }}/** * :: DeveloperApi :: * Top-level method to run gradient descent. */@DeveloperApiobject GradientDescent extends Logging {  /**   * Run stochastic gradient descent (SGD) in parallel using mini batches.   * In each iteration, we sample a subset (fraction miniBatchFraction) of the total data   * in order to compute a gradient estimate.   * Sampling, and averaging the subgradients over this subset is performed using one standard   * spark map-reduce in each iteration.   *   * @param data - Input data for SGD. RDD of the set of data examples, each of   *               the form (label, [feature values]).   * @param gradient - Gradient object (used to compute the gradient of the loss function of   *                   one single data example)   * @param updater - Updater function to actually perform a gradient step in a given direction.   * @param stepSize - initial step size for the first step   * @param numIterations - number of iterations that SGD should be run.   * @param regParam - regularization parameter   * @param miniBatchFraction - fraction of the input data set that should be used for   *                            one iteration of SGD. Default value 1.0.   *   * @return A tuple containing two elements. The first element is a column matrix containing   *         weights for every feature, and the second element is an array containing the   *         stochastic loss computed for every iteration.   */  def runMiniBatchSGD(      data: RDD[(Double, Vector)],      gradient: Gradient,      updater: Updater,      stepSize: Double,      numIterations: Int,      regParam: Double,      miniBatchFraction: Double,      initialWeights: Vector): (Vector, Array[Double]) = {    val stochasticLossHistory = new ArrayBuffer[Double](numIterations)    val numExamples = data.count()    val miniBatchSize = numExamples * miniBatchFraction    // if no data, return initial weights to avoid NaNs    if (numExamples == 0) {      logInfo("GradientDescent.runMiniBatchSGD returning initial weights, no data found")      return (initialWeights, stochasticLossHistory.toArray)    }    // Initialize weights as a column vector    var weights = Vectors.dense(initialWeights.toArray)    val n = weights.size    /**     * For the first iteration, the regVal will be initialized as sum of weight squares     * if it‘s L2 updater; for L1 updater, the same logic is followed.     */    var regVal = updater.compute(      weights, Vectors.dense(new Array[Double](weights.size)), 0, 1, regParam)._2    for (i <- 1 to numIterations) {      val bcWeights = data.context.broadcast(weights)      // Sample a subset (fraction miniBatchFraction) of the total data      // compute and sum up the subgradients on this subset (this is one map-reduce)      val (gradientSum, lossSum) = data.sample(false, miniBatchFraction, 42 + i)        .treeAggregate((BDV.zeros[Double](n), 0.0))(          seqOp = (c, v) => (c, v) match { case ((grad, loss), (label, features)) =>            val l = gradient.compute(features, label, bcWeights.value, Vectors.fromBreeze(grad))            (grad, loss + l)          },          combOp = (c1, c2) => (c1, c2) match { case ((grad1, loss1), (grad2, loss2)) =>            (grad1 += grad2, loss1 + loss2)          })      /**       * NOTE(Xinghao): lossSum is computed using the weights from the previous iteration       * and regVal is the regularization value computed in the previous iteration as well.       */      stochasticLossHistory.append(lossSum / miniBatchSize + regVal)      val update = updater.compute(        weights, Vectors.fromBreeze(gradientSum / miniBatchSize), stepSize, i, regParam)      weights = update._1      regVal = update._2    }    logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format(      stochasticLossHistory.takeRight(10).mkString(", ")))    (weights, stochasticLossHistory.toArray)  }}

 

 

 

 

MLlib之LR算法源码学习