首页 > 代码库 > 线程对象与线程的不同
线程对象与线程的不同
线程的handle是指向"线程核心对象",而不是指向线程本身。
#define WIN32_LEAN_AND_MEAN #include <stdlib.h> #include <stdio.h> #include <Windows.h> DWORD WINAPI ThreadFunc(LPVOID); int main() { HANDLE hThrd; DWORD threadID; int i; for ( i = 0; i < 5; i++) { hThrd = CreateThread(NULL, 0, ThreadFunc, (LPVOID)i, 0, &threadID); if (hThrd) { printf("Thread launched %d\n",i); } } Sleep(2000); return EXIT_SUCCESS; } DWORD WINAPI ThreadFunc(LPVOID n) { int i; for( i =0; i < 10; i++) printf("%d%d%d%d%d%d%d%d%d%d\n",n,n,n,n,n,n,n,n,n,n); return 0; }
“线程核心对象”引用到的那个线程也会令核心对象开启。
“引用计数”机制保证新的进程有个地方可以写下其返回值。这样的机制也保证就线程能够读取那个返回值----只要它没有调用CloseHandle()。
BOOL GetExitCodeThread(
HANDLE hthread, LPDWORD lpExitCode );
#define WIN32_LEAN_AND_MEAN#include <stdlib.h>#include <stdio.h>#include <Windows.h>#include <conio.h>DWORD WINAPI ThreadFunc(LPVOID);int main(){<span style="white-space:pre"> </span>HANDLE hThrd1;<span style="white-space:pre"> </span>HANDLE hThrd2;<span style="white-space:pre"> </span>DWORD exitCode1 = 0;<span style="white-space:pre"> </span>DWORD exitCode2 = 0;<span style="white-space:pre"> </span>DWORD threadId;<span style="white-space:pre"> </span>hThrd1 = CreateThread(NULL,<span style="white-space:pre"> </span>0,<span style="white-space:pre"> </span>ThreadFunc,<span style="white-space:pre"> </span>(LPVOID)1,<span style="white-space:pre"> </span>0,<span style="white-space:pre"> </span>&threadId);<span style="white-space:pre"> </span>if (hThrd1)<span style="white-space:pre"> </span>{<span style="white-space:pre"> </span>printf(" Thread 1 lauched\n");<span style="white-space:pre"> </span>}<span style="white-space:pre"> </span>hThrd2 = CreateThread(NULL,<span style="white-space:pre"> </span>0,<span style="white-space:pre"> </span>ThreadFunc,<span style="white-space:pre"> </span>(LPVOID)2,<span style="white-space:pre"> </span>0,<span style="white-space:pre"> </span>&threadId);<span style="white-space:pre"> </span>if (hThrd2)<span style="white-space:pre"> </span>{<span style="white-space:pre"> </span>printf("Thread 2 launched\n");<span style="white-space:pre"> </span>}<span style="white-space:pre"> </span>for(;;)<span style="white-space:pre"> </span>{<span style="white-space:pre"> </span>printf(" Please any key to exit....\n");<span style="white-space:pre"> </span>getch();<span style="white-space:pre"> </span>GetExitCodeThread(hThrd1,&exitCode1);<span style="white-space:pre"> </span>GetExitCodeThread(hThrd2,&exitCode2);<span style="white-space:pre"> </span>if (exitCode1 == STILL_ACTIVE)<span style="white-space:pre"> </span>{<span style="white-space:pre"> </span>puts("Thread 1 is still running!\n");<span style="white-space:pre"> </span>}<span style="white-space:pre"> </span>if(exitCode2 == STILL_ACTIVE)<span style="white-space:pre"> </span>{<span style="white-space:pre"> </span>puts("Thread2 is still running!\n");<span style="white-space:pre"> </span>}<span style="white-space:pre"> </span>if (exitCode1 != STILL_ACTIVE && exitCode2 != STILL_ACTIVE)<span style="white-space:pre"> </span>break;<span style="white-space:pre"> </span>}<span style="white-space:pre"> </span>CloseHandle(hThrd1);<span style="white-space:pre"> </span>CloseHandle(hThrd2);<span style="white-space:pre"> </span>printf("Thread 1 returned %d\n",exitCode1);<span style="white-space:pre"> </span>printf("Thread 2 returned %d \n",exitCode2);<span style="white-space:pre"> </span>return EXIT_SUCCESS;}DWORD WINAPI ThreadFunc(LPVOID n){<span style="white-space:pre"> </span>Sleep((DWORD)n*1000*2);<span style="white-space:pre"> </span>return (DWORD)n*10;}
每次运行的结果都不一样,这中不确定性在多线程中是非常常见的
<img src="" alt="" />
<img src="" alt="" />
线程对象与线程的不同
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。