首页 > 代码库 > 支持向量机 (SVM)分类器原理分析与基本应用

支持向量机 (SVM)分类器原理分析与基本应用

前言

  支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥。其理论优美,发展相对完善,是非常受到推崇的算法。

  本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO。

  另外还将讲解将SVM扩展到非线性可分的数据集上的大致方法。

预备术语

  1. 分割超平面:就是决策边界

  2. 间隔:样本点到分割超平面的距离

  3. 支持向量:离分割超平面距离最近的样本点

算法原理

  在前一篇文章 - 逻辑回归中,讲到了通过拟合直线来进行分类。

  而拟合的中心思路是求错误估计函数取得最小值,得到的拟合直线是到各样本点距离和最小的那条直线。

  然而,这样的做法很多时候未必是最合适的。

  请看下图:

  技术分享

  一般来说,逻辑回归得到的直线线段会是B或者C这样的形式。而很显然,从分类算法的健壮性来说,D才是最佳的拟合线段。

  SVM分类算法就是基于此思想:找到具有最小间隔的样本点,然后拟合出一个到这些样本点距离和最大的线段/平面

如何计算最优超平面

  1. 首先根据算法思想 - "找到具有最小间隔的样本点,然后拟合出一个到这些样本点距离和最大的线段/平面。" 写出目标函数:

  技术分享

  该式子的解就是待求的回归系数。

  然而,这是一个嵌套优化问题,非常难进行直接优化求解。为了解这个式子,还需要以下步骤。

  2. 不去计算内层的min优化,而是将距离值界定到一个范围 - 大于1,即最近的样本点,也即支持向量到超平面的距离为1。下图可以清楚表示这个意思:

  技术分享

  去掉min操作,代之以界定:label * (wTx + b) >= 1。

  3. 这样得到的式子就是一个带不等式的优化问题,可以采用拉格朗日乘子法(KKT条件)去求解,具体步骤推论本文不给出。推导结果为:

  技术分享

  另外,可加入松弛系数 C,用于控制 "最大化间隔" 和"保证大部分点的函数间隔小于1.0" 这两个目标的权重。

  将 α >= 0 条件改为 C >= α >= 0 即可。

  α 是用于求解过程中的一个向量,它和要求的结果回归系数是一一对应的关系。

  将其中的 α 解出后,便可依据如下两式子(均为推导过程中出现的式子)进行转换得到回归系数:

  技术分享

  技术分享

  说明: 要透彻理解完整的数学推导过程需要一些时间,可参考某位大牛的文章http://blog.csdn.net/v_july_v/article/details/7624837。

使用SMO - 高效优化算法求解 α 值

  算法思想:

    每次循环中选择两个 α 进行优化处理。一旦找到一对合适的 α,那么就增大其中一个减小另外一个。

    所谓合适,是指必须符合两个条件:1. 两个 α 值必须要在 α 分隔边界之外 2. 这两个α 还没有进行过区间化处理或者不在边界上。

  使用SMO求解 α 伪代码:

1 创建一个 alpha 向量并将其初始化为全02 当迭代次数小于最大迭代次数(外循环):3     对数据集中的每个向量(内循环):4         如果该数据向量可以被优化5         随机选择另外一个数据向量6         同时优化这两个向量7         如果都不能被优化,推出内循环。8     如果所有向量都没有被优化,则增加迭代数目,继续下一次的循环。

  实现及测试代码:

  1 #!/usr/bin/env python  2 # -*- coding:UTF-8 -*-  3   4 ‘‘‘  5 Created on 2014-12-29  6   7 @author: fangmeng  8 ‘‘‘  9  10 from numpy import * 11 from time import sleep 12  13 #===================================== 14 # 输入: 15 #        fileName: 数据文件 16 # 输出: 17 #        dataMat: 测试数据集 18 #        labelMat: 测试分类标签集 19 #===================================== 20 def loadDataSet(fileName): 21     载入数据 22      23     dataMat = []; labelMat = [] 24     fr = open(fileName) 25     for line in fr.readlines(): 26         lineArr = line.strip().split(\t) 27         dataMat.append([float(lineArr[0]), float(lineArr[1])]) 28         labelMat.append(float(lineArr[2])) 29     return dataMat,labelMat 30  31 #===================================== 32 # 输入: 33 #        i: 返回结果不等于该参数 34 #        m: 指定随机范围的参数 35 # 输出: 36 #        j: 0-m内不等于i的一个随机数 37 #===================================== 38 def selectJrand(i,m): 39     随机取数 40      41     j=i 42     while (j==i): 43         j = int(random.uniform(0,m)) 44     return j 45  46 #===================================== 47 # 输入: 48 #        aj: 数据对象 49 #        H: 数据对象最大值 50 #        L: 数据对象最小值 51 # 输出: 52 #        aj: 定界后的数据对象。最大H 最小L 53 #===================================== 54 def clipAlpha(aj,H,L): 55     为aj定界 56      57     if aj > H:  58         aj = H 59     if L > aj: 60         aj = L 61     return aj 62  63 #===================================== 64 # 输入: 65 #        dataMatIn: 数据集 66 #        classLabels: 分类标签集 67 #        C: 松弛参数 68 #        toler: 荣错率 69 #        maxIter: 最大循环次数 70 # 输出: 71 #        b: 偏移 72 #        alphas: 拉格朗日对偶因子 73 #===================================== 74 def smoSimple(dataMatIn, classLabels, C, toler, maxIter): 75     SMO算法求解alpha 76      77     # 数据格式转化 78     dataMatrix = mat(dataMatIn);  79     labelMat = mat(classLabels).transpose() 80     m,n = shape(dataMatrix) 81     alphas = mat(zeros((m,1))) 82      83      84     iter = 0  85     b = 0 86     while (iter < maxIter): 87         # alpha 改变标记 88         alphaPairsChanged = 0 89          90         # 对所有数据集 91         for i in range(m): 92             # 预测结果 93             fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b 94             # 预测结果与实际的差值 95             Ei = fXi - float(labelMat[i]) 96             # 如果差值太大则进行优化 97             if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)): 98                 # 随机选择另外一个样本 99                 j = selectJrand(i,m)100                 # 计算另外一个样本的预测结果以及差值101                 fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b102                 Ej = fXj - float(labelMat[j])103                 # 暂存当前alpha值对104                 alphaIold = alphas[i].copy(); 105                 alphaJold = alphas[j].copy();106                 # 确定alpha的最大最小值107                 if (labelMat[i] != labelMat[j]):108                     L = max(0, alphas[j] - alphas[i])109                     H = min(C, C + alphas[j] - alphas[i])110                 else:111                     L = max(0, alphas[j] + alphas[i] - C)112                     H = min(C, alphas[j] + alphas[i])113                 if L==H: 114                     pass115                 # eta为alphas[j]的最优修改量116                 eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T117                 if eta >= 0:118                     print "eta>=0"; continue119                 # 订正alphas[j]120                 alphas[j] -= labelMat[j]*(Ei - Ej)/eta121                 alphas[j] = clipAlpha(alphas[j],H,L)122                 # 如果alphas[j]发生了轻微变化123                 if (abs(alphas[j] - alphaJold) < 0.00001): 124                     continue125                 # 订正alphas[i]126                 alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])127                 128                 # 订正b129                 b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T130                 b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T131                 if (0 < alphas[i]) and (C > alphas[i]): b = b1132                 elif (0 < alphas[j]) and (C > alphas[j]): b = b2133                 else: b = (b1 + b2)/2.0134                 135                 # 更新修改标记参数136                 alphaPairsChanged += 1137                 138         if (alphaPairsChanged == 0): iter += 1139         else: iter = 0140         141     return b,alphas142     143 def test():144     测试145     146     dataArr, labelArr = loadDataSet(/home/fangmeng/testSet.txt)147     b, alphas = smoSimple(dataArr, labelArr, 0.6, 0.001, 40)148     print b149     print alphas[alphas>0]150     151 152 if __name__ == __main__:153     test()

  其中,testSet.txt数据文件格式为三列,前两列特征,最后一列分类结果。

  测试结果:

  技术分享

  结果具有随机性,多次运行的结果不一定一致。

  得到 alphas 数组和 b 向量就能直接算到回归系数了,参考上述代码 93 行,稍作变换即可。

非线性可分情况的大致解决思路

  当数据分析图类似如下的情况:

  技术分享

  则显然无法拟合出一条直线来。碰到这种情况的解决办法是使用核函数 - 将在低维处理非线性问题转换为在高维处理线性问题。

  也就是说,将在SMO中所有出现了向量内积的地方都替换成核函数处理。

  具体的用法,代码本文不做讲解。

小结

  支持向量机是分类算法中目前用的最多的,也是最为完善的。

  关于支持向量机的讨论远远不会止于此,本文初衷仅仅是对这个算法有一定的了解,认识。

  若是在以后的工作中需要用到这方面的知识,还需要全面深入的学习,研究。

   

支持向量机 (SVM)分类器原理分析与基本应用