首页 > 代码库 > 【LeetCode】Populating Next Right Pointers in Each Node
【LeetCode】Populating Next Right Pointers in Each Node
Populating Next Right Pointers in Each Node
Given a binary tree
struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; }
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL
.
Initially, all next pointers are set to NULL
.
Note:
- You may only use constant extra space.
- You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).
For example,
Given the following perfect binary tree,
1 / 2 3 / \ / 4 5 6 7
After calling your function, the tree should look like:
1 -> NULL / 2 -> 3 -> NULL / \ / 4->5->6->7 -> NULL
先不考虑空间复杂度限制
从图例就可以得到解法,就是层次遍历。
每一层的前一个节点next指向后一个节点,层次之间不相连。
也就是说,
如果当前加入的节点cur是左子结点,那么需要判断一下,该节点是不是新一层的第一个节点。
若是:上一个节点pre的next不需要指向当前节点
若否:上一个节点pre的next需要指向当前节点
如果当前加入的节点cur是右子结点,那么不需要判断,上一个节点pre的next需要指向当前节点。
class Solution { public: queue<TreeLinkNode*> q; void connect(TreeLinkNode *root) { if(root == NULL) return; int ind_count = 0; int pow_count = 1; q.push(root); ind_count ++; TreeLinkNode *cur = root; TreeLinkNode *pre = root; TreeLinkNode *temp = root; while(!q.empty()) { temp = q.front(); q.pop(); if(temp->left) { q.push(temp->left); pre = cur; cur = temp->left; ind_count ++; if(ind_count != pow(2.0, pow_count)) { pre->next = cur; } else { pow_count ++; } } if(temp->right) { q.push(temp->right); pre = cur; cur = temp->right; ind_count ++; pre->next = cur; } } } };
接下来我们考虑怎样去掉队列进行层次遍历。
首先我们需要一个指示器,告诉我们每一层的开始,然后在遍历该层的时候将下一层的next进行连接。(遍历依赖于上一层建立好的next)
想法参考Discussion后自己动手实现
class Solution { public: void connect(TreeLinkNode *root) { TreeLinkNode* leftWall = root; TreeLinkNode* cur; while(leftWall != NULL) { cur = leftWall; while(cur != NULL) { if(cur->left != NULL) cur->left->next = cur->right; if(cur->right != NULL && cur->next != NULL) cur->right->next = cur->next->left; cur = cur->next; } leftWall = leftWall->left; } } };
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。