首页 > 代码库 > Leetcode:Scramble String 解题报告

Leetcode:Scramble String 解题报告

Scramble String

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great   /      gr    eat / \    /  g   r  e   at           /           a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat   /      rg    eat / \    /  r   g  e   at           /           a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae   /      rg    tae / \    /  r   g  ta  e       /       t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

技术分享

解答:
1. Brute Force 递归。
基本的思想就是:在S1上找到一个切割点,左边长度为i, 右边长为len - i。 有2种情况表明它们是IsScramble
(1). S1的左边和S2的左边是IsScramble, S1的右边和S2的右边是IsScramble
(2). S1的左边和S2的右边是IsScramble, S1的右边和S2的左边是IsScramble (实际上是交换了S1的左右子树)

而i的取值可以是1  ~  len-1。 基于这个思想,我们可以写出以下的递归Brute Force 解:

引自stellari对复杂度的解释:

stellari
2014 年 5 月 12 日 at 14:22

看了你的不少文章,感觉收获良多!只是有点小问题想请教:按照我的理解,那个递归算法在最差情况下应该是O(3^n),而非O(n^2)。理由是:假设函数运行时间为f(n),那么由于在每次函数调用中都要考虑1~n之间的所有长度,并且正反都要检查,所以有
f(n) = 2[f(1) + f(n-1)] +2[f(2) + f(n-2)] … + 2[f(n/2) + f(n/2+1)]. 易推得f(n+1) = 3(fn), 故f(n) = O(3^n)。当然这是最差情况下的时间复杂度。那么你提到的O(n^2),是否是通过其他数学方法得到的更tight的上限?欢迎探讨!

这一个解是不能通过LeetCode的检查的,复杂度是 3^N

技术分享
 1 public static boolean isScramble1(String s1, String s2) { 2         if (s1 == null || s2 == null) { 3             return false; 4         } 5  6         int len1 = s1.length(); 7         int len2 = s2.length(); 8  9         // the two strings should be the same length.10         if (len1 != len2) {11             return false;12         }13 14         return rec(s1, s2);15     }16 17     // Solution 1: The recursion version.18     public static boolean rec1(String s1, String s2) {19         int len = s1.length();20 21         // the base case.22         if (len == 1) {23             return s1.equals(s2);24         }25 26         // 鍒掑垎2涓瓧绗︿覆27         for (int i = 1; i < len; i++) {28             // we have two situation;29             // the left-left right-right & left-right right-left30             if (rec1(s1.substring(0, i), s2.substring(0, i))31                     && rec1(s1.substring(i, len), s2.substring(i, len))) {32                 return true;33             }34 35             if (rec1(s1.substring(0, i), s2.substring(len - i, len))36                     && rec1(s1.substring(i, len), s2.substring(0, len - i))) {37                 return true;38             }39         }40 41         return false;42     }
View Code


2. 递归加剪枝
感谢unieagle的提示,我们可以在递归中加适当的剪枝,也就是说在进入递归前,先把2个字符串排序,再比较,如果不相同,则直接退出掉。这样也能有效地减少复杂度,具体多少算不清。但能通过leetcode的检查。

技术分享
 1 // Solution 2: The recursion version with sorting. 2     // 鎺掑簭涔嬪悗鐨勫壀鏋濆彲浠ラ?杩嘗eetCode鐨勬鏌? 3     public static boolean rec(String s1, String s2) { 4         int len = s1.length(); 5  6         // the base case. 7         if (len == 1) { 8             return s1.equals(s2); 9         }10 11         // sort to speed up.12         char[] s1ch = s1.toCharArray();13         Arrays.sort(s1ch);14         String s1Sort = new String(s1ch);15 16         char[] s2ch = s2.toCharArray();17         Arrays.sort(s2ch);18         String s2Sort = new String(s2ch);19 20         if (!s1Sort.equals(s2Sort)) {21             return false;22         }23 24         // 鍒掑垎2涓瓧绗︿覆25         for (int i = 1; i < len; i++) {26             // we have two situation;27             // the left-left right-right & left-right right-left28             if (rec(s1.substring(0, i), s2.substring(0, i))29                     && rec(s1.substring(i, len), s2.substring(i, len))) {30                 return true;31             }32 33             if (rec(s1.substring(0, i), s2.substring(len - i, len))34                     && rec(s1.substring(i, len), s2.substring(0, len - i))) {35                 return true;36             }37         }38 39         return false;40     }
View Code

 

3. 递归加Memory

我们在递归中加上记忆矩阵,也可以减少重复运算,但是我们现在就改一下之前递归的结构以方便加上记忆矩阵,我们用index1记忆S1起始地址,index2记忆S2起始地址,len 表示字符串的长度。这样我们可以用一个三维数组来记录计算过的值,同样可以通过leetcode的检查。这个三维数组一个是N^3的复杂度,在每一个递归中,要从1-len地计算一次所有的子串,所以一共的复杂度是N^4

技术分享
 1 // Solution 3: The recursion version with memory. 2     // 閫氳繃璁板繂鐭╅樀鏉ュ噺灏戣绠楅噺 3     public static boolean isScramble3(String s1, String s2) { 4         if (s1 == null || s2 == null) { 5             return false; 6         } 7  8         int len1 = s1.length(); 9         int len2 = s2.length();10 11         // the two strings should be the same length.12         if (len1 != len2) {13             return false;14         }15 16         int[][][] mem = new int[len1][len1][len1];17         for (int i = 0; i < len1; i++) {18             for (int j = 0; j < len1; j++) {19                 for (int k = 0; k < len1; k++) {20                     // -1 means unseted.21                     mem[i][j][k] = -1;22                 }23             }24         }25 26         return recMem(s1, 0, s2, 0, len1, mem);27     }28 29     // Solution 3: The recursion version with memory.30     // 閫氳繃璁板繂鐭╅樀鏉ュ噺灏戣绠楅噺31     public static boolean recMem(String s1, int index1, String s2, int index2,32             int len, int[][][] mem) {33         // the base case.34         if (len == 1) {35             return s1.charAt(index1) == s2.charAt(index2);36         }37 38         // LEN: 1 - totalLen-139         int ret = mem[index1][index2][len - 1];40         if (ret != -1) {41             return ret == 1 ? true : false;42         }43 44         // 鍒濆鍖栦负false45         ret = 0;46 47         // 鍒掑垎2涓瓧绗︿覆. i means the length of the left side in S148         for (int i = 1; i < len; i++) {49             // we have two situation;50             // the left-left right-right & left-right right-left51             if (recMem(s1, index1, s2, index2, i, mem)52                     && recMem(s1, index1 + i, s2, index2 + i, len - i, mem)) {53                 ret = 1;54                 break;55             }56 57             if (recMem(s1, index1, s2, index2 + len - i, i, mem)58                     && recMem(s1, index1 + i, s2, index2, len - i, mem)) {59                 ret = 1;60                 break;61             }62         }63 64         mem[index1][index2][len - 1] = ret;65         return ret == 1 ? true : false;66     }
View Code

 


4. 动态规划。

其实如果写出了3,动态规划也就好写了。

三维动态规划题目:

我们提出维护量res[i][j][n],其中i是s1的起始字符,j是s2的起始字符,而n是当前的字符串长度,res[i][j][len]表示的是以i和j分别为s1和s2起点的长度为len的字符串是不是互为scramble。
有了维护量我们接下来看看递推式,也就是怎么根据历史信息来得到res[i][j][len]。判断这个是不是满足,其实我们首先是把当前s1[i...i+len-1]字符串劈一刀分成两部分,然后分两种情况:第一种是左边和s2[j...j+len-1]左边部分是不是scramble,以及右边和s2[j...j+len-1]右边部分是不是scramble;第二种情况是左边和s2[j...j+len-1]右边部分是不是scramble,以及右边和s2[j...j+len-1]左边部分是不是scramble。如果以上两种情况有一种成立,说明s1[i...i+len-1]和s2[j...j+len-1]是scramble的。而对于判断这些左右部分是不是scramble我们是有历史信息的,因为长度小于n的所有情况我们都在前面求解过了(也就是长度是最外层循环)。
上面说的是劈一刀的情况,对于s1[i...i+len-1]我们有len-1种劈法,在这些劈法中只要有一种成立,那么两个串就是scramble的。
总结起来递推式是res[i][j][len] = || (res[i][j][k]&&res[i+k][j+k][len-k] || res[i][j+len-k][k]&&res[i+k][j][len-k]) 对于所有1<=k
如此总时间复杂度因为是三维动态规划,需要三层循环,加上每一步需要线行时间求解递推式,所以是O(n^4)。虽然已经比较高了,但是至少不是指数量级的,动态规划还是相当有用的,空间复杂度是O(n^3)。代码如下:

 

注:事实上这里最大的难点,是你怎么安排这三个循环。仔细看一下,计算len对应的解时,要用到一堆len-1的解。所以我们应该len 从0到1地这要子计算(三维啊都没办法通过画图来推导动态规划的递增关系了!)

技术分享
 1 /* 2      * Solution 4: The DP Version. 3      */ 4     public static boolean isScramble4(String s1, String s2) { 5         if (s1 == null || s2 == null) { 6             return false; 7         } 8  9         int len1 = s1.length();10         int len2 = s2.length();11 12         // the two strings should be the same length.13         if (len1 != len2) {14             return false;15         }16 17         /*18          * i: The index of string 1. j: The index of string 2. k: The length of19          * the two string. 1 ~ len120          * 21          * D[i][j][k] =22          */23         boolean[][][] D = new boolean[len1][len1][len1 + 1];24         for (int subLen = 1; subLen <= len1; subLen++) {25             for (int i1 = 0; i1 <= len1 - subLen; i1++) {26                 for (int i2 = 0; i2 <= len1 - subLen; i2++) {27                     if (subLen == 1) {28                         D[i1][i2][subLen] = s1.charAt(i1) == s2.charAt(i2);29                         continue;30                     } 31                     32                     D[i1][i2][subLen] = false;33                     for (int l = 1; l < subLen; l++) {34                         if (D[i1][i2][l] && D[i1 + l][i2 + l][subLen - l]35                                 || D[i1][i2 + subLen - l][l] && D[i1 + l][i2][subLen - l]36                                 ) {37                             D[i1][i2][subLen] = true;38                             break;39                         }40                     }41                 }42             }43         }44 45         return D[0][0][len1];46     }47     48     /*49      * Solution 4: The DP Version. REDO50      */51     public static boolean isScramble(String s1, String s2) {52         if (s1 == null || s2 == null) {53             return false;54         }55         56         int len = s1.length();57         58         if (s2.length() != len) {59             return false;60         }61 62         boolean[][][] D = new boolean[len][len][len + 1];63         64         // D[i][j][k] = D[i][]65         for (int k = 1; k <= len; k++) {66             // 注意这里的边界选取。 如果选的不对,就会发生越界的情况.. orz..67             // attention: should use "<="68             for (int i = 0; i <= len - k; i++) {69                 for (int j = 0; j <= len - k; j++) {70                     if (k == 1) {71                         D[i][j][k] = s1.charAt(i) == s2.charAt(j);72                         continue;73                     }74                     75                     D[i][j][k] = false;76                     for (int l = 1; l <= k - 1; l++) {77                         if (D[i][j][l] && D[i + l][j + l][k - l] 78                             || D[i][j + k - l][l] && D[i + l][j][k - l] ) {79                             D[i][j][k] = true;80                             break;81                         }82                     }83                 }84             }85         }86         87         return D[0][0][len];88     }
View Code

 

GITHUB:

https://github.com/yuzhangcmu/LeetCode_algorithm/blob/9241a5148ba94d79c7dfcb3dbbbd3ad5474bdcf1/dp/IsScramble.java

Leetcode:Scramble String 解题报告