首页 > 代码库 > 数据结构基础(2) --顺序查找 & 二分查找
数据结构基础(2) --顺序查找 & 二分查找
顺序查找
适用范围:
没有进行排序的数据序列
缺点:
速度非常慢, 效率为O(N)
//实现 template <typename Type> Type *sequenceSearch(Type *begin, Type *end, const Type &searchValue) throw(std::range_error) { if ((begin == end) || (begin == NULL) || (end == NULL)) throw std::range_error("pointer unavailable"); for (Type *index = begin; index < end; ++index) { if (*index == searchValue) return index; } return end; } template <typename Type> Type *sequenceSearch(Type *array, int length, const Type &searchValue) throw(std::range_error) { return sequenceSearch(array, array+length, searchValue); }
迭代二分查找
应用范围:
数据必须首先排序,才能应用二分查找;效率为(logN)
算法思想:
譬如数组{1, 2, 3, 4, 5, 6, 7, 8, 9},查找元素6,用二分查找的算法执行的话,其顺序为:
1.第一步查找中间元素,即5,由于5<6,则6必然在5之后的数组元素中,那么就在{6, 7, 8, 9}中查找,
2.寻找{6, 7, 8, 9}的中位数,为7,7>6,则6应该在7左边的数组元素中,那么只剩下6,即找到了。
二分查找算法就是不断将数组进行对半分割,每次拿中间元素和目标元素进行比较。
//实现:迭代二分 template <typename Type> Type *binarySearch(Type *begin, Type *end, const Type &searchValue) throw(std::range_error) { if ((begin == end) || (begin == NULL) || (end == NULL)) throw std::range_error("pointer unavailable"); /**注意:此处high为end-1,并不是end 因为在后续的查找过程中,可能会如下操作 (*high), 或等价的操作 此时应该访问的是最后一个元素, 必须注意不能对数组进行越界访问! */ Type *low = begin, *high = end-1; while (low <= high) { //计算中间元素 Type *mid = low + (high-low)/2; //如果中间元素的值==要找的数值, 则直接返回 if (*mid == searchValue) return mid; //如果要找的数比中间元素大, 则在数组的后半部分查找 else if (searchValue > *mid) low = mid + 1; //如果要找的数比中间元素小, 则在数组的前半部分查找 else high = mid - 1; } return end; } template <typename Type> Type *binarySearch(Type *array, int length, const Type &searchValue) throw(std::range_error) { return binarySearch(array, array+length, searchValue); }
递归简介
递归就是递归...(自己调用自己),递归的是神,迭代的是人;
递归与非递归的比较
//递归求解斐波那契数列 unsigned long ficonacciRecursion(int n) { if (n == 1 || n == 2) return 1; else return ficonacciRecursion(n-1) + ficonacciRecursion(n-2); }
//非递归求解斐波那契数列 unsigned long ficonacciLoop(int n) { if (n == 1 || n == 2) return 1; unsigned long first = 1, second = 1; unsigned long ans = first + second; for (int i = 3; i <= n; ++i) { ans = first + second; first = second; second = ans; } return ans; }
递归二分查找
算法思想如同迭代二分查找;
//实现 template <typename Type> Type *binarySearchByRecursion(Type *front, Type *last, const Type &searchValue) throw(std::range_error) { if ((front == NULL) || (last == NULL)) throw std::range_error("pointer unavailable"); if (front <= last) { Type *mid = front + (last-front)/2; if (*mid == searchValue) return mid; else if (searchValue > *mid) return binarySearchByRecursion(mid+1, last, searchValue); else return binarySearchByRecursion(front, mid-1, searchValue); } return NULL; } template <typename Type> int binarySearchByRecursion(Type *array, int left, int right, const Type &searchValue) throw (std::range_error) { if (array == NULL) throw std::range_error("pointer unavailable"); if (left <= right) { int mid = left + (right-left)/2; if (array[mid] == searchValue) return mid; else if (searchValue < array[mid]) return binarySearchByRecursion(array, left, mid-1, searchValue); else return binarySearchByRecursion(array, mid+1, right, searchValue); } return -1; }
小结:
其实C++ 的STL已经实现好了std::binary_search(),在用的时候我们只需调用即可, 但是二分算法的思想还是非常重要的, 在求解一些较为复杂的问题时, 我们时常能够看到二分的身影.
数据结构基础(2) --顺序查找 & 二分查找
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。