首页 > 代码库 > MapReduce基础知识
MapReduce基础知识
hadoop版本:1.1.2
一、Mapper类的结构
Mapper类是Job.setInputFormatClass()方法的默认值,Mapper类将输入的键值对原封不动地输出。
org.apache.hadoop.mapreduce.Mapper类的结构如下:
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { public class Context extends MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { public Context(Configuration conf, TaskAttemptID taskid, RecordReader<KEYIN,VALUEIN> reader, RecordWriter<KEYOUT,VALUEOUT> writer, OutputCommitter committer, StatusReporter reporter, InputSplit split) throws IOException, InterruptedException { super(conf, taskid, reader, writer, committer, reporter, split); } } /** * Called once at the beginning of the task. * 在task开始之前调用一次 * */ protected void setup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * Called once for each key/value pair in the input split. Most applications * should override this, but the default is the identity function. * 对数据分块中的每个键值对都调用一次 * */ @SuppressWarnings("unchecked") protected void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException { context.write((KEYOUT) key, (VALUEOUT) value); } /** * Called once at the end of the task. * 在task结束后调用一次 * */ protected void cleanup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * Expert users can override this method for more complete control over the * execution of the Mapper. * 默认先调用一次setup方法,然后循环对每个键值对调用map方法,最后调用一次cleanup方法。 * * @param context * @throws IOException */ public void run(Context context) throws IOException, InterruptedException { setup(context); while (context.nextKeyValue()) { map(context.getCurrentKey(), context.getCurrentValue(), context); } cleanup(context); }}
二、Reducer类的结构
Reducer类是Job.setOutputFormatClass()方法的默认值,Reducer类将输入的键值对原封不动地输出。
org.apache.hadoop.mapreduce.Reduce与Mapper类似。
public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { public class Context extends ReduceContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { public Context(Configuration conf, TaskAttemptID taskid, RawKeyValueIterator input, Counter inputKeyCounter, Counter inputValueCounter, RecordWriter<KEYOUT,VALUEOUT> output, OutputCommitter committer, StatusReporter reporter, RawComparator<KEYIN> comparator, Class<KEYIN> keyClass, Class<VALUEIN> valueClass ) throws IOException, InterruptedException { super(conf, taskid, input, inputKeyCounter, inputValueCounter, output, committer, reporter, comparator, keyClass, valueClass); } } /** * Called once at the start of the task. */ protected void setup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * This method is called once for each key. Most applications will define * their reduce class by overriding this method. The default implementation * is an identity function. */ @SuppressWarnings("unchecked") protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context ) throws IOException, InterruptedException { for(VALUEIN value: values) { context.write((KEYOUT) key, (VALUEOUT) value); } } /** * Called once at the end of the task. */ protected void cleanup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * Advanced application writers can use the * {@link #run(org.apache.hadoop.mapreduce.Reducer.Context)} method to * control how the reduce task works. */ public void run(Context context) throws IOException, InterruptedException { setup(context); while (context.nextKey()) { reduce(context.getCurrentKey(), context.getValues(), context); } cleanup(context); }}
三、hadoop提供的mapper和reducer实现
我们不一定总是要从头开始自己编写自己的Mapper和Reducer类。Hadoop提供了几种常见的Mapper和Reducer的子类,这些类可以直接用于我们的作业当中。
mapper可以在org.apache.hadoop.mapreduce.lib.map包下面找到如下子类:
- InverseMapper:A Mapper hat swaps keys and values.
- MultithreadedMapper:Multithreaded implementation for org.apache.hadoop.mapreduce.Mapper.
- TokenCounterMapper:Tokenize the input values and emit each word with a count of 1.
reducer可以在org.apache.hadoop.mapreduce.lib.reduce包下面找到如下子类:
- IntSumReducer:它输出每个键对应的整数值列表的总和。
- LongSumReducer:它输出每个键对应的长整数值列表的总和。
四、MapReduce的输入
该类的作用是将输入的数据分割成一个个的split,并将split进一步拆分成键值对作为map函数的输入。
InputFormat
describes the input-specification for a Map-Reduce job.
The Map-Reduce framework relies on the InputFormat
of the job to:
- Validate the input-specification of the job.
- Split-up the input file(s) into logical
InputSplit
s, each of which is then assigned to an individualMapper
. - Provide the
RecordReader
implementation to be used to glean input records from the logicalInputSplit
for processing by theMapper
.
The default behavior of file-based InputFormat
s, typically sub-classes of FileInputFormat
, is to split the input into logical InputSplit
s based on the total size, in bytes, of the input files. However, the FileSystem
blocksize of the input files is treated as an upper bound for input splits. A lower bound on the split size can be set via mapred.min.split.size.
Clearly, logical splits based on input-size is insufficient for many applications since record boundaries are to respected. In such cases, the application has to also implement a RecordReader
on whom lies the responsibility to respect record-boundaries and present a record-oriented view of the logical InputSplit
to the individual task.
2、RecordReader抽象类
The record reader breaks the data into key/value pairs for input to the Mapper
.
3、hadoop提供的InputFormat
hadoop在org.apache.hadoop.mapreduce.lib.input包下提供了一些InputFormat的实现。hadoop默认使用TextInputFormat类处理输入。
4、hadoop提供的RecordReader
hadoop在org.apache.hadoop.mapreduce.lib.input包下也提供了一些RecordReader的实现。
五、MapReduce的输出
OutputFormat
describes the output-specification for a Map-Reduce job.The Map-Reduce framework relies on the OutputFormat
of the job to:
- Validate the output-specification of the job. For e.g. check that the output directory doesn‘t already exist.
- Provide the
RecordWriter
implementation to be used to write out the output files of the job. Output files are stored in aFileSystem
.
2、RecordWriter抽象类
RecordWriter
writes the output <key, value> pairs to an output file.
RecordWriter
implementations write the job outputs to the FileSystem
.
3、hadoop提供的OutputFormat
hadoop在org.apache.hadoop.mapreduce.lib.output包下提供了一些OutputFormat的实现。hadoop默认使用TextOutputFormat类处理输出。
4、hadoop提供的RecordWriter
在org.apache.hadoop.mapreduce.lib.input包下的OutputFormat的实现类(子类)将它们所需的RecordWriter定义为内部类,因此不存在单独实现的RecordWriter类。
六、MapReduce各阶段涉及到的类
P70-71
1、InputFormat类
2、Mapper类
3、Combiner类
4、Partitioner类
5、Reducer类
6、OutputFormat类
7、其他
七、详解Shuffle过程:http://langyu.iteye.com/blog/992916
map->shuffle->reduce
P60-64,例子P64-68
附:WEB接口的端口号配置:
mapred-default.xml
<property><name>mapred.job.tracker.http.address</name><value>0.0.0.0:50030</value><description>The job tracker http server address and port the server will listen on.If the port is 0 then the server will start on a free port.</description></property>
hdfs-default.xml
<property><name>dfs.http.address</name><value>0.0.0.0:50070</value><description>The address and the base port where the dfs namenode web ui will listen on.If the port is 0 then the server will start on a free port.</description></property>
MapReduce基础知识