ECC加解密过程(转)
2024-10-26 08:20:02 209人阅读
ECC加解密过程:
不是所有的椭圆曲线都可以用来加密。Y^2=x^3+ax+b是一类可以用来加密的椭圆曲线,也是最为简单的一类。
考虑等式: K=kG [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数]
不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。 这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k(k<n,n为基点G的阶)称为私有密钥(privte key),K称为公开密钥(public key)。
现在我们描述一个利用椭圆曲线进行加密通信的过程:
1、用户A选定一条椭圆曲线Ep(a,b),并取椭圆曲线上一点,作为基点G。
2、用户A选择一个私有密钥k,并生成公开密钥K=kG。
3、用户A将Ep(a,b)和点K,G传给用户B。
4、用户B接到信息后 ,将待传输的明文编码到Ep(a,b)上一点M(编码方法很多,这里不作讨论,主要是将明文数据类型转成比特串),并产生一个随机整数r(r<n)。
5、用户B计算点C1=M+rK;C2=rG。
6、用户B将C1、C2传给用户A。
7、用户A接到信息后,计算C1-kC2,结果就是点M。因为
C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M
再对点M进行解码(按照刚才的编码方法逆向解码)就可以得到明文 ECC加解密过程(转)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉:
投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。