首页 > 代码库 > go内存泄露case

go内存泄露case

用go写了一个守护进程程序:用于检測redis的存活状态并将结果写到zookeeper中,部署到redis机器上。对于每一个redis实例会有一个goroutine每隔固定时间去检測其状态,由主goroutine负责信号处理等。再接收到信号时kill其它的goroutine。程序执行了一段时间发现,有些redis实例的相应zookeeper的信息不更新。通过日志发现相应redis的goroutine挂掉了。

阅读源代码发现貌似是zk的第三方库抛出一个非预期的异常导致。

为了解决问题,对逻辑重构:由主goroutine每隔固定时间,对于每一个redis实例启动一个goroutine去进行检測,避免出现非预期异常导致goroutine挂掉,从而状态信息不更新的情况。

因为goroutine的创建开销非常低,而且golang官方推荐使用大量的goroutine来抗并发,所以这样的方式实现也非常合理。重构完。上线測试发现存在内存泄露。

(1)观察GC

首先对代码review,因为半年前写的,而且近期都没用golang,所以没有发现bug。

接着,就想看下gc相关的信息。或许可能透漏些东西。网上查了golang gc相关,在runtime的doc中描写叙述了。通过环境变量设置GODEBUG=‘gctrace=1‘能够让go的执行时把gc打印信息到stderr。

GODEBUG=‘gctrace=1‘ ./sentinel-agent >gc.log &
gc.log的输出例如以下:

gc781(1): 1+2385+17891+0 us, 60 -> 60 MB, 21971 (3503906-3481935) objects, 13818/14/7369 sweeps, 0(0) handoff, 0(0) steal, 0/0/0 yields
gc782(1): 1+1794+18570+1 us, 60 -> 60 MB, 21929 (3503906-3481977) objects, 13854/1/7315 sweeps, 0(0) handoff, 0(0) steal, 0/0/0 yields
gc783(1): 1+1295+20499+0 us, 59 -> 59 MB, 21772 (3503906-3482134) objects, 13854/1/7326 sweeps, 0(0) handoff, 0(0) steal, 0/0/0 yields
gc781:从程序启动開始,第781次gc

(1):參与gc的线程个数

1+2385+17891+0:各自是1)stop-the-world的时间。即暂停全部goroutine。2)清扫标记对象的时间;3)标记垃圾对象的时间;4)等待线程结束的耗时。单位都是us。4者之和就是gc暂停的总体耗时

60 -> 60 MB:gc后,堆上存活对象占用的内存。以及整个堆大小(包含垃圾对象)

21971 (3503906-3481935) objects:gc后,堆上的对象数量,gc前分配的对象以及本次释放的对象

13818/14/7369 sweeps:描写叙述对象清扫阶段。一共同拥有13818个memory span。当中14在后台被清扫。7369在stop-the-world期间被清扫

0(0) handoff。0(0) steal:描写叙述并行标记阶段的负载均衡特性。

当前在不同线程间传送操作数和总传送操作数。以及当前steal操作数和总steal操作数

0/0/0 yields:描写叙述并行标记阶段的效率。在等待其它线程的过程中。一共同拥有0次yields操做

经过观察gc的输出,发现当前堆上对象总数不断增多,没有降低的趋势。这说明存在对象的泄露,从而导致内存泄露。

(2)memory profile

依据golang官网profile指南,在代码中加入

import _ "net/http/pprof"

func main() {
    go func() {
        http.ListenAndServe("localhost:6060", nil)
    }()
}
能够在执行时对程序进行profile,通过http訪问:

go tool pprof http://localhost:6060/debug/pprof/heap

进行memory profile,默认是--inuse_space,显示当前活跃的对象(不包含垃圾对象)占用的空间。

使用--alloc_space能够显示全部分配的对象(包含垃圾对象)。

只是这两种方式都没有发现异常。

(3)监控goroutine个数

通过runtime.NumGoroutine()能够获取当前的goroutine的个数。通过给程序加入http server获取一些统计信息来了解程序的执行状态,这是Jeff Dean推崇的方法。通过加入下述代码来实时查看goroutine的个数

    // goroutine stats and pprof
    go func() {
        http.HandleFunc("/goroutines", func(w http.ResponseWriter, r *http.Request) {
            num := strconv.FormatInt(int64(runtime.NumGoroutine()), 10)
            w.Write([]byte(num))
        });
        http.ListenAndServe("localhost:6060", nil)
        glog.Info("goroutine stats and pprof listen on 6060")
    }()
通过命令:

curl localhost:6060/goroutines

查询当前的goroutine的个数。通过不程序执行期间。不断查看。发现goroutine个数不断添加,没有销毁的迹象。

(4)goroutine泄露

通过上面的观察,发现存在goroutine泄露,即goroutine没有正常退出。因为每轮(每隔10秒执行一次)都会创建多个goroutine,假设不能正常退出,则会存在大量的goroutine。go的gc使用的是mark and sweep,会从全局变量、goroutine的栈为根集合扫描全部的存活对象。假设goroutine不退出,就会泄露大量内存。

在确定是因为goroutine没有正常退出后,又一次review代码,发现了泄露的根本原因。在重构前。在信号处理程序中,为了正常结束程序,对于每一个goroutine都有一个channel,用于主goroutine等待全部goroutine正常结束后再退出。主goroutine中,信号处理程序用于等待全部goroutine的代码:

waiters = make([]chan int, Num)
for _, w := range waiters {
    <- w
}

执行检查逻辑的goroutine在结束后,会调用ag.w <- 1,用于向主goroutine发送消息。

重构后,因为每轮都会创建goroutine,因为用于主goroutine和检查逻辑的goroutine之间的channel的大小是1,所以全部创建的检查goroutine都堵塞在ag.w <- 1上。不能正常退出。最后,把channel逻辑去掉。就不存在goroutine泄露了。

(5)总结

- goroutine的管理非常重要,假设goroutine泄露,就会存在内存泄露

- 内嵌http server,用于查看程序执行状态

- 眼下。go的gc还比較脆弱,尽量降低对象的创建。能缓存的就缓存。因为对象多了的话,扫描的时间也会加长

go内存泄露case