首页 > 代码库 > 【Python图像特征的音乐序列生成】深度卷积网络,以及网络核心
【Python图像特征的音乐序列生成】深度卷积网络,以及网络核心
这个项目主要涉及到两个网络,其中卷积神经网络用来提取图片表达的情绪,提取出一个二维向量。
网络结构如图:
词向量采用预训练的glove模型,d=50,其他信息包括了图片的“空旷程度”、亮度、对比度等信息,用来更好地描述图片特征。
对于图中的卷积神经网络,需要讲解的地方是:卷积核是一个一维卷积核,每一层卷积层之后都连接了池化层,做的是最大值池化,每一层之间有固定的dropout层,最后输出的向量与我们预先设定的label进行计算,损失函数定义为
\[J(\theta)=-\sum_iy‘_i\log(y_i)+\frac{\lambda}{2}\|\theta\|^2_F\]
式中使用了交叉熵和L2范数避免可能出现的过拟合,在实际训练中我们将会增减神经网络的层数,调整相应的超参数。
最后得到的向量我们在LSTM里进行输入。
【Python图像特征的音乐序列生成】深度卷积网络,以及网络核心
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。