首页 > 代码库 > Codevs 1507 酒厂选址

Codevs 1507 酒厂选址

1507 酒厂选址

 

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
 
 
题目描述 Description

Abstinence(戒酒)岛的居民们酷爱一种无酒精啤酒。以前这种啤酒都是从波兰进口,但今年居民们想建一个自己的啤酒厂。岛上所有的城市都坐落在海边,并且由一条沿海岸线的环岛高速路连接。酒厂的投资者收集了关于啤酒需求量的信息,即每天各城市消费的啤酒桶数。另外还知道相邻城市之间的距离。每桶啤酒每英里的运费是1元。日运费是将所需要的啤酒从酒厂运到所有城市所必需的运费之和。日运费的多少和酒厂的选址有关。投资者想找到一个合适的城市来修建酒厂,以使得日运费最小。

请设计一个程序:从文件bre.in 读入城市的数目、相邻两城市间的距离以及每个城市消费的啤酒桶数,计算最小的日运费,将结果写到输出文件bre.out中。

输入描述 Input Description

第一行是一个整数n(5 <= n <= 10000) ,表示城市的数目。 城市沿高速路编号,使得相邻的城市的编号也相邻(城市1和n也被认为是相邻)。 以下的n行,每行有两个非负整数。第I+1行的数 zi、di分别是城市I每日的啤酒消费量(桶)和从城市I沿高速路到下一个城市的距离(英里)。高速路的总长不会超过65535 英里。每座城市的日消费量不会超过255桶。

输出描述 Output Description

一个整数,表示所需的最小日运费(元)。

样例输入 Sample Input

6

1 2

2 3

1 2

5 2

1 10

2 3

样例输出 Sample Output

41

/*    给出的数据会组成一个环,分别顺时针和逆时针求出两个前缀和s1[],s2[]    由于环上两个点之间的路径可以是优弧也可以是劣弧    假设两个点编号分别为a,b(a<b),那么a,b之间最短路就可以O(1)求出来,为min(s2[b]+s1[a],s1[b]-s1[a])    有了O(1)求最短路的办法,就可以枚举酒厂地址,所以总的时间复杂度为n^2,数据规模10000,过不过就看脸啦    一定要用long long,而且用了long long,极大值就不能再赋成0x7fffffff,要用一个更大的值*/#include<iostream>#include<cstdio>using namespace std;#define maxn 10010long long n,s1[maxn],s2[maxn],s[maxn],w[maxn],ans=17826622193699999;long long work(long long start){    long long res=0;    for(long long i=1;i<=n;i++){        if(i==start)continue;        long long ss=start,tt=i;        if(ss>tt)swap(ss,tt);        long long dis=min(s2[tt]+s1[ss],s1[tt]-s1[ss]);        res+=dis*w[i];    }    return res;}int main(){    scanf("%d",&n);    for(long long i=1;i<=n;i++){        scanf("%lld%lld",&w[i],&s[i]);        if(i+1<=n)            s1[i+1]=s1[i]+s[i];    }    for(long long i=n;i>=1;i--)        s2[i]=s2[i+1]+s[i];    for(long long i=1;i<=n;i++)//枚举每个点做酒厂         ans=min(ans,work(i));    printf("%lld",ans);}

 

Codevs 1507 酒厂选址