首页 > 代码库 > Day 37(07/18) 锁
Day 37(07/18) 锁
2.1.2 Thread类继承式创建
#继承Thread式创建 import threading import time class MyThread(threading.Thread): def __init__(self,num): threading.Thread.__init__(self) self.num=num def run(self): print("running on number:%s" %self.num) time.sleep(3) t1=MyThread(56) t2=MyThread(78) t1.start() t2.start() print("ending")
2.4 同步锁 (Lock)
import time import threading def addNum(): global num #在每个线程中都获取这个全局变量 #num-=1 temp=num time.sleep(0.1) num =temp-1 # 对此公共变量进行-1操作 num = 100 #设定一个共享变量 thread_list = [] for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: #等待所有线程执行完毕 t.join() print(‘Result: ‘, num)
锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:
import threading R=threading.Lock() R.acquire() ‘‘‘ 对公共数据的操作 ‘‘‘ R.release()
扩展思考
View Code
2.5 死锁与递归锁
所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。
import threading import time mutexA = threading.Lock() mutexB = threading.Lock() class MyThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): self.fun1() self.fun2() def fun1(self): mutexA.acquire() # 如果锁被占用,则阻塞在这里,等待锁的释放 print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time())) mutexB.acquire() print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time())) mutexB.release() mutexA.release() def fun2(self): mutexB.acquire() print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time())) time.sleep(0.2) mutexA.acquire() print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time())) mutexA.release() mutexB.release() if __name__ == "__main__": print("start---------------------------%s"%time.time()) for i in range(0, 10): my_thread = MyThread() my_thread.start()
在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:
2.7 Semaphore(信号量)
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。
实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):
import threading import time semaphore = threading.Semaphore(5) def func(): if semaphore.acquire(): print (threading.currentThread().getName() + ‘ get semaphore‘) time.sleep(2) semaphore.release() for i in range(20): t1 = threading.Thread(target=func) t1.start()
应用:连接池
思考:与Rlock的区别?
http://www.cnblogs.com/yuanchenqi/articles/6755717.html (详细参考老师博客)
Day 37(07/18) 锁
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。