首页 > 代码库 > 00、Wordcount
00、Wordcount
1、pom.xml
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>sparkcore</groupId>
<artifactId>sparkcore-java</artifactId>
<version>1.0</version>
<packaging>jar</packaging>
<name>sparkcore-java</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.1.1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.1.1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.3</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.3</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.8.9</version>
</dependency>
</dependencies>
</project>2、Windows本地模拟运行
无需启动Spark服务即可在Windows环境下的Eclipse中运行此代码
2.1、Java版
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
package sparkcore;
import java.util.Arrays;
import java.util.Iterator;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
/**
* 使用java开发本地测试的wordcount程序
*
* @author Administrator
*
*/
public class WordCountLocal {
public static void main(String[] args) {
// 编写Spark应用程序
// 本地执行,是可以执行在eclipse中的main方法中,执行的
// 第一步:创建SparkConf对象,设置Spark应用的配置信息
// 使用setMaster()可以设置Spark应用程序要连接的Spark集群的master节点的url
// 但是如果设置为local则代表,在本地运行
SparkConf conf = new SparkConf().setAppName("WordCountLocal").setMaster("local");
// 第二步:创建JavaSparkContext对象
// 在Spark中,SparkContext是Spark所有功能的一个入口,你无论是用java、scala,甚至是python编写
// 都必须要有一个SparkContext,它的主要作用,包括初始化Spark应用程序所需的一些核心组件,包括
// 调度器(DAGSchedule、TaskScheduler),还会去到Spark Master节点上进行注册,等等
// 一句话,SparkContext,是Spark应用中,可以说是最最重要的一个对象
// 但是呢,在Spark中,编写不同类型的Spark应用程序,使用的SparkContext是不同的,如果使用scala,
// 使用的就是原生的SparkContext对象
// 但是如果使用Java,那么就是JavaSparkContext对象
// 如果是开发Spark SQL程序,那么就是SQLContext、HiveContext
// 如果是开发Spark Streaming程序,那么就是它独有的SparkContext
// 以此类推
JavaSparkContext sc = new JavaSparkContext(conf);
// 第三步:要针对输入源(hdfs文件、本地文件,等等),创建一个初始的RDD
// 输入源中的数据会打散,分配到RDD的每个partition中,从而形成一个初始的分布式的数据集
// 我们这里呢,因为是本地测试,所以呢,就是针对本地文件
// SparkContext中,用于根据文件类型的输入源创建RDD的方法,叫做textFile()方法
// 在Java中,创建的普通RDD,都叫做JavaRDD
// 在这里呢,RDD中,有元素这种概念,如果是hdfs或者本地文件呢,创建的RDD,每一个元素就相当于
// 是文件里的一行
JavaRDD<String> lines = sc.textFile("test.txt");
// 第四步:对初始RDD进行transformation操作,也就是一些计算操作
// 通常操作会通过创建function,并配合RDD的map、flatMap等算子来执行
// function,通常,如果比较简单,则创建指定Function的匿名内部类
// 但是如果function比较复杂,则会单独创建一个类,作为实现这个function接口的类
// 先将每一行拆分成单个的单词
// FlatMapFunction,有两个泛型参数,分别代表了输入和输出类型
// 我们这里呢,输入肯定是String,因为是一行一行的文本,输出,其实也是String,只不过是多个放在集合中
// 这里先简要介绍flatMap算子的作用,其实就是,将RDD的一个元素,给拆分成一个或多个元素
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
public Iterator<String> call(String line) throws Exception {
return Arrays.asList(line.split(" ")).iterator();
}
});
// 接着,需要将每一个单词,映射为(单词, 1)的这种格式
// 因为只有这样,后面才能根据单词作为key,来进行每个单词的出现次数的累加
// mapToPair,其实就是将每个元素,映射为一个(v1,v2)这样的Tuple2类型的元素
// 如果大家还记得scala里面讲的tuple,那么没错,这里的tuple2就是scala类型,包含了两个值
// mapToPair这个算子,要求的是与PairFunction配合使用,第一个泛型参数代表了输入类型
// 第二个和第三个泛型参数,代表的输出的Tuple2的第一个值和第二个值的类型
// JavaPairRDD的两个泛型参数,分别代表了tuple元素的第一个值和第二个值的类型
JavaPairRDD<String, Integer> pairs = words.mapToPair(
new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1L;
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
});
// 接着,需要以单词作为key,统计每个单词出现的次数
// 这里要使用reduceByKey这个算子,对每个key对应的value,都进行reduce操作
// 比如JavaPairRDD中有几个元素,分别为(hello, 1) (hello, 1) (hello, 1) (world, 1)
// reduce操作,相当于是把第一个值和第二个值进行计算,然后再将结果与第三个值进行计算
// 比如这里的hello,那么就相当于是,首先是1 + 1 = 2,然后再将2 + 1 = 3
// 最后返回的JavaPairRDD中的元素,也是tuple,但是第一个值就是每个key,第二个值就是key的value
// reduce之后的结果,相当于就是每个单词出现的次数
JavaPairRDD<String, Integer> wordCounts = pairs.reduceByKey(
// 第一与第二个参数为输入类型(为两个Tuple2的第二个元素类型),第三个为输出类型
new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L;
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
// 到这里为止,我们通过几个Spark算子操作,已经统计出了单词的次数
// 但是,之前我们使用的flatMap、mapToPair、reduceByKey这种操作,都叫做transformation操作
// 一个Spark应用中,光是有transformation操作,是不行的,是不会执行的,必须要有一种叫做action
// 接着,最后,可以使用一种叫做action操作的,比如说,foreach,来触发程序的执行
wordCounts.foreach(new VoidFunction<Tuple2<String, Integer>>() {
private static final long serialVersionUID = 1L;
public void call(Tuple2<String, Integer> wordCount) throws Exception {
System.out.println(wordCount._1 + " : " + wordCount._2);
}
});
sc.close();
}
}
2.2、Scala版:
新建Scala工程,然后将其转换为Maven工程(右击工程--》Configure--》Covert to Maven Project),pom.xm文件与Java版一样
<meta http-equiv="content-type" content="text/html; charset=utf-8">
package sparkcore
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object WordCount {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("WordCount").setMaster("local")
val sc = new SparkContext(conf)
val lines = sc.textFile("test.txt", 1);
val words = lines.flatMap { line => line.split(" ") }
val pairs = words.map { word => (word, 1) }
val wordCounts = pairs.reduceByKey { _ + _ }
wordCounts.foreach(wordCount => println(wordCount._1 + " : " + wordCount._2 ))
}
}00、Wordcount
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。