首页 > 代码库 > 核函数的定义和作用(转)

核函数的定义和作用(转)

  我来举一个核函数把低维空间映射到高维空间的例子。

  下面这张图位于第一、二象限内。我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母。我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横、纵坐标是两个特征。显然,在这个二维空间内,“+”“-”两类数据不是线性可分的。
技术分享

  我们现在考虑核函数技术分享,即“内积平方”。这里面技术分享是二维空间中的两个点。这个核函数对应着一个二维空间到三维空间的映射,它的表达式是:
                                                                                      技术分享

可以验证,
技术分享

在P这个映射下,原来二维空间中的图在三维空间中的像是这个样子:
技术分享
                                               (前后轴为x轴,左右轴为y轴,上下轴为z轴)
注意到绿色的平面可以完美地分割红色和紫色,也就是说,两类数据在三维空间中变成线性可分的了。而三维中的这个判决边界,再映射回二维空间中是这样的:

技术分享

这是一条双曲线,它不是线性的。

================================================

  如上面的例子所说,核函数的作用就是隐含着一个从低维空间到高维空间的映射,而这个映射可以把低维空间中线性不可分的两类点变成线性可分的。

当然,我举的这个具体例子强烈地依赖于数据在原始空间中的位置。
事实中使用的核函数往往比这个例子复杂得多。它们对应的映射并不一定能够显式地表达出来;它们映射到的高维空间的维数也比我举的例子(三维)高得多,甚至是无穷维的。这样,就可以期待原来并不线性可分的两类点变成线性可分的了。

================================================

  在机器学习中常用的核函数,一般有这么几类,也就是LibSVM中自带的这几类:
1) 线性:技术分享
2) 多项式:技术分享
3) Radial basis function:技术分享
4) Sigmoid:技术分享

我举的例子是多项式核函数中技术分享的情况。

  在实用中,很多使用者都是盲目地试验各种核函数,并扫描其中的参数,选择效果最好的。至于什么样的核函数适用于什么样的问题,大多数人都不懂。很不幸,我也属于这大多数人,所以如果有人对这个问题有理论性的理解,还请指教。

================================================

  核函数要满足的条件称为Mercer‘s condition。由于我以应用SVM为主,对它的理论并不很了解,就不阐述什么了。使用SVM的很多人甚至都不知道这个条件,也不关心它;有些不满足该条件的函数也被拿来当核函数用。

  
 
作者:王赟 Maigo
链接:https://www.zhihu.com/question/24627666/answer/28440943
来源:知乎

核函数的定义和作用(转)