首页 > 代码库 > Python 生成器以及应用
Python 生成器以及应用
一、定义
可以理解为一种数据类型,这种数据类型自动实现了迭代器协议(其他的数据类型需要调用自己内置的__iter__方法),所以生成器就是可迭代对象
二、生成器的两种形式(Python有两种不同的方式提供生成器)
1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行
yield的功能:
1 把函数的结果做生迭代器(以一种优雅的方式封装好__iter__,__next__)
2 函数暂停与再继续运行的状态是由yield
def func(): print(‘first‘) yield 11111111 print(‘second‘) yield 2222222 print(‘third‘) yield 33333333 print(‘fourth‘) g=func() print(g) from collections import Iterator print(isinstance(g,Iterator)) #判断是否为迭代器对象 print(next(g)) print(‘======>‘) print(next(g)) print(‘======>‘) print(next(g)) print(‘======>‘) print(next(g)) for i in g: #i=iter(g) print(i)
注:yield与return的比较?
相同:都有返回值的功能
不同:return只能返回一次值,而yield可以返回多次值
2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表
g=(‘egg%s‘ %i for i in range(1000)) print(g) print(next(g)) print(next(g)) print(next(g)) with open(‘a.txt‘,encoding=‘utf-8‘) as f: # res=max((len(line) for line in f)) res=max(len(line) for line in f) print(res) print(max([1,2,3,4,5,6])) with open(‘a.txt‘,encoding=‘utf-8‘) as f: g=(len(line) for line in f) print(max(g)) print(max(g)) print(max(g))
三、应用
# [{‘name‘: ‘apple‘, ‘price‘: 333, ‘count‘: 3}, ]文件内容 #通过生成器表达器完成对文件的读完跟操作 with open(‘db.txt‘,encoding=‘utf-8‘) as f: info=[{‘name‘:line.split()[0], ‘price‘:float(line.split()[1]), ‘count‘:int(line.split()[2])} for line in f if float(line.split()[1]) >= 30000] print(info)
Python 生成器以及应用
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。