首页 > 代码库 > CF GYM 100548 Last Defence(2014ACM西安现场赛Problem K)

CF GYM 100548 Last Defence(2014ACM西安现场赛Problem K)

ProblemK. Last Defence


Description

Given two integersA and B. Sequence S is defined as follow:

? S0 = A

? S1 = B

? Si = |Si?1 ?Si?2| for i ≥ 2

Count the number ofdistinct numbers in S.


Input

The first line ofthe input gives the number of test cases, T. T test cases follow. Tis about 100000.

Each test caseconsists of one line - two space-separated integers A, B. (0 ≤ A, B≤ 1018).


Output

For each test case,output one line containing “Case #x: y”, where x is the test casenumber (starting from 1) and y is the number of distinct numbers inS.


Samples

Sample Input

Sample Output

2

7 4

3 5

Case #1: 6

Case #2: 5


知识点:

Ad-Hoc,辗转相除法。

题目大意:

给定数列S的首两项,要求之后的各项满足Si= |Si?1 ? Si?2|(前两项差值的绝对值)。问整个数列S中不同的数字个数。


解题思路:

首先容易发现,当i足够大时,最后一定会出现“xx0xx0...”这样的重复。所以不同数字个数一定是有限的。

究其原因,对于数yxy一定能写成kx+b的形式,在数列的生成过程中,会出现kx+bx(k-1)x+b(k-2)x+bx...2x+bxx+bbx,其中出现的不同数字个数就是(kx+b)/ x,之后问题变成了数xb的问题,最后可以发现这就是一个辗转相除法的过程。每做一次辗转相除gcd(x,y),不同数字个数就多了x/ y。最后加上一个末尾出现的0

还有一些特殊情况需要考虑,比如有数字是0


参考代码:

#include <iostream>
using namespace std;

long long a, b, ans;
int nCase, cCase;

long long calc(long long a, long long b) {
    long long ret = 0;
    while (b) {
        long long t = b;
        ret += a / b;
        b = a % b;
        a = t;
    }
    return ret + 1;
}

int main() {
    ios::sync_with_stdio(false);
    cin >> nCase;
    while (nCase--) {
        cin >> a >> b;
        if (a == 0 && b == 0) {
            ans = 1;
        } else if (a == 0 || b == 0) {
            ans = 2;
        } else {
            ans = calc(a, b);
        }
        cout << "Case #" << ++cCase << ": " << ans << endl;
    }
    return 0;
}


CF GYM 100548 Last Defence(2014ACM西安现场赛Problem K)