首页 > 代码库 > Toxophily-数论以及二分三分
Toxophily-数论以及二分三分
cid=83980#status//G/0" class="ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only" style="display:inline-block; position:relative; padding:0px; margin-right:0.1em; vertical-align:middle; overflow:visible; text-decoration:none; font-family:Verdana,Arial,sans-serif; font-size:1em; border:1px solid rgb(211,211,211); color:rgb(85,85,85)">
id=19904" class="ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only" style="display:inline-block; position:relative; padding:0px; margin-right:0.1em; vertical-align:middle; overflow:visible; text-decoration:none; font-family:Verdana,Arial,sans-serif; font-size:1em; border:1px solid rgb(211,211,211); color:rgb(85,85,85)">
Description
We all like toxophily.
Bob is hooked on toxophily recently. Assume that Bob is at point (0,0) and he wants to shoot the fruits on a nearby tree. He can adjust the angle to fix the trajectory. Unfortunately, he always fails at that. Can you help him?
Now given the object‘s coordinates, please calculate the angle between the arrow and x-axis at Bob‘s point. Assume that g=9.8N/m.
Input
Technical Specification
1. T ≤ 100.
2. 0 ≤ x, y, v ≤ 10000.
Output
Output "-1", if there‘s no possible answer.
Please use radian as unit.
Sample Input
3 0.222018 23.901887 121.909183 39.096669 110.210922 20.270030 138.355025 2028.716904 25.079551
Sample Output
1.561582 -1 -1
设vx=v*cos(α),vy=v*sin(α),同一时候从P(0,0)点到达目标点花了t时间,重力加速度为G=9.8.
∴x=vx*t,y=vy*t-1/2*G*t2.
消掉vx,vy,t能够转换为y=v*sin(α)*x/(v*cos(α))-1/2*g*x2/(v2*cos(α)2).
∴将sin(α)/cos(α)=tan(α);
∴y=v*x*tan(α)-(1/2*g*x2/v2)*((sin(α)2+cos(α)2)/cos(α)2);
∴y=v*x*tan(α)-(1/2*g*x2/v2)*(1+tan(α)2);
∴将其进行整理能够得到:g*x2*tan(α)2-2*v2*x*tan(α)+2*v2y+g*x2=0;
∴能够得到△=b2-4*a*c;
∴令a=g*x2,b=-2*v2*x,c=2*v2y+g*x2.
又∵x1=(-b+(b2-4*a*c)?)/(2*a),x2=(-b-(b2-4*a*c)?)/(2*a).
∴能够通过上述公式将tan(α)求出,然后就是通过atan((tan(α)))将α求出
接着检查α是否符合条件就能够了。
/* Author: 2486 Memory: 1616 KB Time: 0 MS Language: C++ Result: Accepted */ #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const double PI=acos(-1); const double G=9.8; int T; double x,y,v; int main() { scanf("%d",&T); while(T--) { scanf("%lf%lf%lf",&x,&y,&v); double a=G*x*x,b=-2.0*v*v*x,c=2.0*v*v*y+G*x*x; double posi=(-b+sqrt(b*b-4.0*a*c))/2.0/a; double ne=(-b-sqrt(b*b-4.0*a*c))/2.0/a; posi=atan(posi),ne=atan(ne); if(posi>=0&&posi<=PI/2.0&&ne>=0&&ne<=PI/2.0) { printf("%.6lf\n",posi>ne?ne:posi); } else if(ne>=0&&ne<=PI/2.0) { printf("%.6lf\n",ne); } else if(posi>=0&&posi<=PI/2.0) { printf("%.6lf\n",posi); } else printf("-1\n"); } return 0; }
三分二分方法
/* Author: 2486 Memory: 1628 KB Time: 0 MS Language: C++ Result: Accepted */ #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const double PI=acos(-1); const double eps=1e-10; int T; double x,y,v; double C(double m) { double vx=v*cos(m),vy=v*sin(m); return (vy*x)/vx-9.8*(x/vx*x/vx)/2.0; } bool B(double m) { double vx=v*cos(m),vy=v*sin(m); return (vy*x)/vx-9.8*(x/vx*x/vx)/2.0>=y; } int main() { scanf("%d",&T); while(T--) { scanf("%lf%lf%lf",&x,&y,&v); double lb=0,ub=PI/2.0; ///////////////求出最大高度所相应的倾斜度//////////////// while(ub-lb>eps) { double mid=(ub+lb)/2.0; double mmid=(ub+mid)/2.0; if(C(mid)>C(mmid)) { ub=mmid; } else lb=mid; } if(C(ub)<y) { printf("-1\n"); continue; } /////////////////////////////// lb=0; ////////////////求出无限接近目标的倾斜度/////////////// while(ub-lb>eps) { double mid=(ub+lb)/2.0; if(B(mid)) { ub=mid; } else lb=mid; } /////////////////////////////// printf("%.6lf\n",ub); } return 0; }
Toxophily-数论以及二分三分