首页 > 代码库 > HDU 4912 Paths on the tree(LCA+贪心)

HDU 4912 Paths on the tree(LCA+贪心)

题目链接 Paths on the tree

来源  2014 多校联合训练第5场 Problem B

题意就是给出m条树上的路径,让你求出可以同时选择的互不相交的路径最大数目。

我们先求出每一条路径(u, v)中u和v的LCA:w,按照路径的w的深度大小deep[w]对所有的路径排序。

deep[w]越大,排在越前面。

然后从第一条路径开始一次处理,看c[u]和c[v]是否都没被标记过,如果都没被标记过则我们把这条路径选上,把答案加1。

同时标记以w为根的子树的节点为1,方便后续对c数组的查询。

时间复杂度$O(mlogn + mlogm + n)$

#include <bits/stdc++.h>using namespace std;#define rep(i, a, b)	for (int i(a); i <= (b); ++i)#define dec(i, a, b)	for (int i(a); i >= (b); --i)const int N = 1e5 + 10;const int A = 24;int f[N][A];int n, m, ans;int deep[N], c[N];vector <int> v[N];struct node{ 	int x, y, z;	friend bool operator < (const node &a, const node &b){		return deep[a.z] > deep[b.z];	}} p[N];void dfs(int x, int fa, int dep){	deep[x] = dep;	if (fa){                 f[x][0] = fa;		for (int i = 0; f[f[x][i]][i]; ++i) f[x][i + 1] = f[f[x][i]][i];	}	for (auto u : v[x]){		if (u == fa) continue;		dfs(u, x, dep + 1);	}}int LCA(int a, int b){	if (deep[a] < deep[b]) swap(a, b);	for (int i = 0,  delta = deep[a] - deep[b]; delta; delta >>= 1, ++i) if (delta & 1) a = f[a][i];	if (a == b) return a;	dec(i, 19, 0) if (f[a][i] != f[b][i]) a = f[a][i], b = f[b][i];	return f[a][0];}void tag(int x){	c[x] = 1;	for (auto u : v[x]){		if (u == f[x][0]) continue;		if (c[u] == 0) tag(u);	}}int main(){	while (~scanf("%d%d", &n, &m)){		memset(f, 0, sizeof f);		rep(i, 0, n + 1) v[i].clear();		rep(i, 2, n){			int x, y;			scanf("%d%d", &x, &y);			v[x].push_back(y);			v[y].push_back(x);		}		memset(deep, 0, sizeof deep);		dfs(1, 0, 0);		ans = 0;		rep(i, 1, m){			int x, y;			scanf("%d%d", &x, &y);			int z = LCA(x, y);			p[i] = {x, y, z};		}		sort(p + 1, p + m + 1);		memset(c, 0, sizeof c);		rep(i, 1, m){			int u = p[i].x, w = p[i].y;			if (c[u] == 0 && c[w] == 0){				tag(p[i].z);				++ans;			}		}		printf("%d\n", ans);	}	return 0;}

 

HDU 4912 Paths on the tree(LCA+贪心)