首页 > 代码库 > 如何在多线程leader-follower模式下正确的使用boost::asio。

如何在多线程leader-follower模式下正确的使用boost::asio。

#include <assert.h>#include <signal.h>#include <unistd.h>#include <iostream>#include <string>#include <deque>#include <set>#include "boost/asio.hpp"#include "boost/thread.hpp"#include "boost/bind.hpp"#include "boost/shared_ptr.hpp"#include "boost/enable_shared_from_this.hpp"#include "boost/thread/thread.hpp"#include "boost/date_time/posix_time/posix_time.hpp"#include "boost/atomic.hpp"namespace {class EchoServer;typedef boost::shared_ptr<EchoServer> EchoServerPtr;typedef boost::shared_ptr<boost::asio::io_service> IOServicePtr;typedef boost::shared_ptr<boost::asio::ip::tcp::socket> SocketPtr;class Connection;typedef boost::shared_ptr<Connection> ConnPtr;typedef boost::shared_ptr<std::string> StringPtr;typedef boost::shared_ptr<boost::asio::deadline_timer> TimerPtr;// 准则1:// 一个Socket永远不要调用async_read/async_write超过1次,可以参考boost doc:// This operation is implemented in terms of zero or more calls to the stream‘s async_write_some function, and is known as a composed operation. The program must ensure that the stream performs no other write operations (such as async_write, the stream‘s async_write_some function, or any other composed operations that perform writes) until this operation completes.// 也就是一定要前一个async操作完成再发起下一个!!// 准则2:// 操作1个socket, 在多线程条件下一定要加锁处理, 一把大锁解决一切问题, 其他用法都是非线程安全的.// 也就是说同步close/async_read/async_write这三个函数调用即可.class Connection : public boost::enable_shared_from_this<Connection> {public:  enum ConnStatus {    kConnected = 0,    kError = 1,    kClosed = 2,  };  Connection(SocketPtr socket) : status_(kConnected), socket_(socket) {  }  ~Connection() {    // 可以在这里将write_queue中的待发消息进行重试等逻辑处理    std::cout << __FUNCTION__ << std::endl;  }  void Start() {     socket_->async_receive(boost::asio::buffer(msgbuf_, sizeof(msgbuf_)), boost::bind(&Connection::ReadHandler, shared_from_this(), _1, _2));  }  void Close() { // 重复的调用socket的close没有问题, 但不能并发调用close(假设Close接口暴露给用户,是有这种需求的).    if (status_.exchange(kClosed) != kClosed) { // 即便重复调用socket的close是没有问题的, 但是这里也保证Close只能被调用一次.      boost::lock_guard<boost::mutex> guard(socket_mutex_);      boost::system::error_code errcode;      if (socket_->close(errcode)) {        std::cerr << "Close Connection Error" << std::endl;      } else {        std::cerr << "Close Connection Done" << std::endl;      }    }  }  ConnStatus status() { return status_.load(); }private:  void ReadHandler(const boost::system::error_code& error, std::size_t bytes_transferred) {    if (!error) { // 没有发生错误(包含被取消), 那么发起下一次读取.      // 该函数读到一些数据就会返回, 正好适用于这里的echo逻辑. 如果希望读取指定长度完成前不返回, 使用async_read.      {        boost::lock_guard<boost::mutex> guard(socket_mutex_);        socket_->async_receive(boost::asio::buffer(msgbuf_, sizeof(msgbuf_)), boost::bind(&Connection::ReadHandler, shared_from_this(), _1, _2));      }      //printf("%.*s", (int)bytes_transferred, msgbuf_);      // 这里展示一下如何在多线程asio下正确的使用async_write有序的发送echo, 并且待发送消息队列以便在socket失效时有机会发送消息重发.      EchoMsg(StringPtr(new std::string(msgbuf_, bytes_transferred)));    } else if (error == boost::asio::error::operation_aborted) {      std::cout << "Connection ReadHandler Canceled." << std::endl;    } else {      ConnStatus expected = kConnected;      if (status_.compare_exchange_strong(expected, kError)) {        std::cout << "ReadHandler Error." << std::endl;      }    }  }  void WriteHandler(const boost::system::error_code& error, std::size_t bytes_transferred) {    if (!error) {      boost::lock_guard<boost::mutex> guard(socket_mutex_);      write_queue_.pop_front();      if (write_queue_.size()) {        StringPtr next_msg = write_queue_.front();        // async_write保证数据全部写完回调.        async_write(*socket_, boost::asio::buffer(*next_msg), boost::bind(&Connection::WriteHandler, shared_from_this(), _1, _2));      }    } else if (error == boost::asio::error::operation_aborted) {      std::cout << "Connection WriteHandler Canceled." << std::endl;    } else {      ConnStatus expected = kConnected;      if (status_.compare_exchange_strong(expected, kError)) {        std::cout << "WriteHandler Error." << std::endl;      }    }  }  void EchoMsg(StringPtr msg) {    boost::lock_guard<boost::mutex> guard(socket_mutex_);    write_queue_.push_back(msg);    if (write_queue_.size() == 1) {      async_write(*socket_, boost::asio::buffer(*msg), boost::bind(&Connection::WriteHandler, shared_from_this(), _1, _2));    }  }  std::deque<StringPtr> write_queue_;  boost::mutex socket_mutex_;  boost::atomic<ConnStatus> status_;  char msgbuf_[1024 * 16];  SocketPtr socket_;};class EchoServer : public boost::enable_shared_from_this<EchoServer> {public:  EchoServer(IOServicePtr io_service) : stopped_(false), io_service_(io_service), acceptor_(*io_service) {  }  ~EchoServer() {    // 在Stop后主线程释放引用计数, 等待io_service处理完剩余事件后析构, 此时不会再有新连接加入,    // 可以Close掉所有Socket并释放引用计数.    std::cout << __FUNCTION__ << std::endl;    boost::lock_guard<boost::mutex> guard(conn_set_mutex_);    for (ConnSetIter iter = conn_set_.begin(); iter != conn_set_.end(); ++iter) {      (*iter)->Close();    }  }  bool Start(const std::string& host, unsigned short port) {    boost::system::error_code errcode;    boost::asio::ip::address address = boost::asio::ip::address::from_string(host, errcode);    if (errcode) {      return false;    }    if (acceptor_.open(boost::asio::ip::tcp::v4(), errcode)) {      return false;    }    acceptor_.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));    boost::asio::ip::tcp::endpoint endpoint(address, port);    if (acceptor_.bind(endpoint, errcode) || acceptor_.listen(1024, errcode)) {      return false;    }    SocketPtr socket(new boost::asio::ip::tcp::socket(*io_service_));    acceptor_.async_accept(*socket, boost::bind(&EchoServer::AcceptHandler, shared_from_this(), socket, _1));    return true;  }  void Stop() {    boost::system::error_code errcode;    if (acceptor_.close(errcode)) {      std::cerr << "Close Acceptor Error" << std::endl;    }    stopped_.store(true);  }private:  void AcceptHandler(SocketPtr socket, const boost::system::error_code& error) { // 没有并发调用    if (error == boost::asio::error::operation_aborted) { // 因Acceptor被关闭而Cancel, 不需要做任何事情.      std::cout << "Accept Canceled" << std::endl;      return; // 用户主动关闭了Server, 因此操作被Cancel    } else if (!error) { // 成功Accept, 创建一个新的Connection.      std::cout << "Accept New Connection" << std::endl;      ConnPtr new_conn(new Connection(socket));      new_conn->Start();      {        boost::lock_guard<boost::mutex> guard(conn_set_mutex_);        conn_set_.insert(new_conn);      }      TimerPtr socket_timer(new boost::asio::deadline_timer(*io_service_));      socket_timer->expires_from_now(boost::posix_time::seconds(1));      socket_timer->async_wait(boost::bind(&EchoServer::CheckSocketStatus, shared_from_this(), new_conn, socket_timer, _1));    } else {      std::cout << "Accept Error" << std::endl;    }    SocketPtr new_socket(new boost::asio::ip::tcp::socket(*io_service_));    acceptor_.async_accept(*new_socket, boost::bind(&EchoServer::AcceptHandler, shared_from_this(), new_socket, _1));  }  void CheckSocketStatus(ConnPtr conn, TimerPtr socket_timer, const boost::system::error_code& error) {    // 1, EchoServer已经被Stop调用, 那么尽快停止timer释放掉对EchoServer的引用计数, 让EchoServer析构结束服务。    // 2, 判断conn->status()==kError则Close连接并从ConnSet中移除.    // 3, 判断conn->status()==kClosed则从ConnSet中移除.(将来用户可以获取SocketPtr并随时调用Close)    // 4, 连接正常, 继续发起下一次timer.    boost::lock_guard<boost::mutex> guard(conn_set_mutex_);    ConnSetIter iter = conn_set_.find(conn);    assert(iter != conn_set_.end());    if (stopped_.load()) {      // case 1      //std::cout << "case 1" << std::endl;    } else if (conn->status() == Connection::kError) { // case 2      //std::cout << "case 2" << std::endl;      conn->Close();      conn_set_.erase(conn);    } else if (conn->status() == Connection::kClosed) {// case 3      //std::cout << "case 3" << std::endl;      conn_set_.erase(conn);    } else {      //std::cout << "case 4" << std::endl; // case 4      socket_timer->expires_from_now(boost::posix_time::seconds(1));      socket_timer->async_wait(boost::bind(&EchoServer::CheckSocketStatus, shared_from_this(), conn, socket_timer, _1));    }  }  typedef std::set<ConnPtr> ConnSet;  typedef ConnSet::iterator ConnSetIter;  boost::atomic<bool> stopped_;  boost::mutex conn_set_mutex_;  ConnSet conn_set_;  IOServicePtr io_service_;  boost::asio::ip::tcp::acceptor acceptor_; // auto-close while destructor.};volatile sig_atomic_t g_shutdown_server = 0;void ShutdownServerHandler(int signo) {  g_shutdown_server = 1;}void SetupSignalHandler() {  sigset_t sigset;  sigfillset(&sigset);  sigdelset(&sigset, SIGTERM);  sigdelset(&sigset, SIGINT);  sigprocmask(SIG_SETMASK, &sigset, NULL);  struct sigaction act;  memset(&act, 0, sizeof(act));  act.sa_handler = ShutdownServerHandler;  sigaction(SIGINT, &act, NULL);  sigaction(SIGTERM, &act, NULL);}void AsioThreadMain(IOServicePtr io_service) {  // 多线程调用这个io_service跑leader-follower模型  // 初始化挂了一个EchoServer的Acceptor在里面, 主线程调用Stop并Reset释放引用后,  // io_service会处理完acceptor剩余事件后释放引用计数从而使echoserver析构, 在echoserver析构中  // 会将所有在线的socket进行close并释放引用计数, 等io_service处理完所有socket的剩余事件后释放引用计数  // 从而使所有socket析构, 最终io_service上将无任何事件, 自动退出线程.  io_service->run();}}int main(int argc, char** argv) {  SetupSignalHandler();  IOServicePtr io_service(new boost::asio::io_service());  EchoServerPtr echo_server(new EchoServer(io_service));  if (!echo_server->Start("0.0.0.0", 7566)) {    return -1;  }  boost::thread_group asio_threads;  for (int i = 0; i < 64; ++i) {    asio_threads.create_thread(boost::bind(AsioThreadMain, io_service));  }  while (!g_shutdown_server) {    sleep(1);  }  echo_server->Stop(); // 关闭监听器  echo_server.reset();   // 释放引用计数, 让echo_server析构.  asio_threads.join_all(); // 等待asio自然退出  std::cout << "Stopped.. .." << std::endl;  return 0;}

  

如何在多线程leader-follower模式下正确的使用boost::asio。