首页 > 代码库 > ZooKeeper之(六)应用实例

ZooKeeper之(六)应用实例

6.1 Java API

客户端要连接 Zookeeper服务器可以通过创建 org.apache.zookeeper.ZooKeeper 的一个实例对象,然后调用这个类提供的接口来和服务器交互。

ZooKeeper 主要是用来维护和监控一个目录节点树中存储的数据的状态,所有我们能够操作 ZooKeeper 和操作目录节点树大体一样,如创建一个目录节点,给某个目录节点设置数据,获取某个目录节点的所有子目录节点,给某个目录节点设置权限和监控这个目录节点的状态变化。

下面通过代码实例,来熟悉一下JavaAPI的常用方法。

import java.util.List;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.data.Stat;

public class ZkTest {

	private static final String CONNECT_STRING = "127.0.0.1:2181";
	private static final int SESSION_TIMEOUT = 3000;

	public static void main(String[] args) throws Exception {

		// 定义一个监控所有节点变化的Watcher
		Watcher allChangeWatcher = new Watcher() {
			@Override
			public void process(WatchedEvent event) {
				System.out.println("**watcher receive WatchedEvent** changed path: " + event.getPath()
						+ "; changed type: " + event.getType().name());
			}
		};

		// 初始化一个与ZK连接。三个参数:
		// 1、要连接的服务器地址,"IP:port"格式;
		// 2、会话超时时间
		// 3、节点变化监视器
		ZooKeeper zk = new ZooKeeper(CONNECT_STRING, SESSION_TIMEOUT, allChangeWatcher);

		// 新建节点。四个参数:1、节点路径;2、节点数据;3、节点权限;4、创建模式
		zk.create("/myName", "chenlongfei".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
		System.out.println("create new node ‘/myName‘");

		// 判断某路径是否存在。两个参数:1、节点路径;2、是否监控(Watcher即初始化ZooKeeper时传入的Watcher)
		Stat beforSstat = zk.exists("/myName", true);
		System.out.println("Stat of ‘/myName‘ before change : " + beforSstat.toString());

		// 修改节点数据。三个参数:1、节点路径;2、新数据;3、版本,如果为-1,则匹配任何版本
		Stat afterStat = zk.setData("/myName", "clf".getBytes(), -1);
		System.out.println("Stat of ‘/myName‘ after change: " + afterStat.toString());

		// 获取所有子节点。两个参数:1、节点路径;2、是否监控该节点
		List<String> children = zk.getChildren("/", true);
		System.out.println("children of path ‘/‘: " + children.toString());

		// 获取节点数据。三个参数:1、节点路径;2、书否监控该节点;3、版本等信息可以通过一个Stat对象来指定
		byte[] nameByte = zk.getData("/myName", true, null);
		String name = new String(nameByte, "UTF-8");
		System.out.println("get data from ‘/myName‘: " + name);

		// 删除节点。两个参数:1、节点路径;2、 版本,-1可以匹配任何版本,会删除所有数据
		zk.delete("/myName", -1);
		System.out.println("delete ‘/myName‘");

		zk.close();
	}

运行程序,打印结果如下:

技术分享

更详细的API请参考官方网站。

 

Zookeeper 从设计模式角度来看,是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper 将负责通知已经在 Zookeeper 上注册的那些观察者做出相应的反应。

下面通过两个ZooKeeper的典型用用场景来体会下ZooKeeper的特性与使用方法。


6.2 分布式锁

先来回顾一下多线程中的锁控制。

public class MultiThreadTest {

	// 以一个静态变量来模拟公共资源
	private static int counter = 0;

	// 多线程环境下,会出现并发问题
	public static void plus() {
		
		// 计数器加一
		counter++;
		
		// 线程随机休眠数毫秒,模拟现实中的耗时操作
		int sleepMillis = (int) (Math.random() * 100);
		try {
			Thread.sleep(sleepMillis);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}

	// 线程实现类
	static class CountPlus extends Thread {
		@Override
		public void run() {
			for (int i = 0; i < 20; i++) {
				plus();
			}
			System.out.println(Thread.currentThread().getName() + "执行完毕:" + counter);
		}

		public CountPlus(String threadName) {
			super(threadName);
		}

	}

	public static void main(String[] args) throws Exception {

		// 开启五个线程
		CountPlus threadA = new CountPlus("threadA");
		threadA.start();

		CountPlus threadB = new CountPlus("threadB");
		threadB.start();

		CountPlus threadC = new CountPlus("threadC");
		threadC.start();

		CountPlus threadD = new CountPlus("threadD");
		threadD.start();

		CountPlus threadE = new CountPlus("threadE");
		threadE.start();
	}
}

 上例中,开启了五个线程,每个线程通过plus()方法对静态变量counter分别进行20次累加,预期counter最后会变成100。运行程序:

技术分享

可以发现,五个线程执行完毕之后,counter并没有变成100。plus()方法涉及到对公共资源的改动,但是并没有对它进行同步控制,可能会造成多个线程同时对公共资源发起改动,进而出现并发问题。问题的根源在于,上例中没有保证同一时刻只能有一个线程可以改动公共资源。

给plus()方法加上synchronized关键字,重新运行程序:

技术分享

可见,最终达到了预期结果。

synchronized关键字的作用是对plus()方法加入锁控制,一个线程想要执行该方法,首先需要获得锁(锁是唯一的),执行完毕后,再释放锁。如果得不到锁,该线程会进入等待池中等待,直到抢到锁才能继续执行。这样就保证了同一时刻只能有一个线程可以改动公共资源,避免了并发问题。

 

共享锁在同一个进程中很容易实现,可以靠Java本身提供的同步机制解决,但是在跨进程或者在不同 Server 之间就不好实现了,这时候就需要一个中间人来协调多个Server之间的各种问题,比如如何获得锁/释放锁、谁先获得锁、谁后获得锁等。

借助Zookeeper 可以实现这种分布式锁:需要获得锁的 Server 创建一个 EPHEMERAL_SEQUENTIAL 目录节点,然后调用 getChildren()方法获取列表中最小的目录节点,如果最小节点就是自己创建的目录节点,那么它就获得了这个锁,如果不是那么它就调用 exists() 方法并监控前一节点的变化,一直到自己创建的节点成为列表中最小编号的目录节点,从而获得锁。释放锁很简单,只要删除它自己所创建的目录节点就行了。

流程图如下:

技术分享 

下面我们对刚才的代码进行改造,不用synchronize关键字而是使用ZooKeeper达到锁控制的目的,模拟分布式锁的实现。 

import java.util.Collections;
import java.util.List;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.data.Stat;

public class ZkDistributedLock {

	// 以一个静态变量来模拟公共资源
	private static int counter = 0;

	public static void plus() {

		// 计数器加一
		counter++;

		// 线程随机休眠数毫秒,模拟现实中的费时操作
		int sleepMillis = (int) (Math.random() * 100);
		try {
			Thread.sleep(sleepMillis);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}

	// 线程实现类
	static class CountPlus extends Thread {

		private static final String LOCK_ROOT_PATH = "/Locks";
		private static final String LOCK_NODE_NAME = "Lock_";

		// 每个线程持有一个zk客户端,负责获取锁与释放锁
		ZooKeeper zkClient;

		@Override
		public void run() {

			for (int i = 0; i < 20; i++) {

				// 访问计数器之前需要先获取锁
				String path = getLock();

				// 执行任务
				plus();

				// 执行完任务后释放锁
				releaseLock(path);
			}
			
			closeZkClient();
			System.out.println(Thread.currentThread().getName() + "执行完毕:" + counter);
		}

		/**
		 * 获取锁,即创建子节点,当该节点成为序号最小的节点时则获取锁
		 */
		private String getLock() {
			try {
				// 创建EPHEMERAL_SEQUENTIAL类型节点
				String lockPath = zkClient.create(LOCK_ROOT_PATH + "/" + LOCK_NODE_NAME,
						Thread.currentThread().getName().getBytes(), Ids.OPEN_ACL_UNSAFE,
						CreateMode.EPHEMERAL_SEQUENTIAL);
				System.out.println(Thread.currentThread().getName() + " create path : " + lockPath);

				// 尝试获取锁
				tryLock(lockPath);

				return lockPath;
			} catch (Exception e) {
				e.printStackTrace();
			}
			return null;
		}

		/**
		 * 该函数是一个递归函数 如果获得锁,直接返回;否则,阻塞线程,等待上一个节点释放锁的消息,然后重新tryLock
		 */
		private boolean tryLock(String lockPath) throws KeeperException, InterruptedException {

			// 获取LOCK_ROOT_PATH下所有的子节点,并按照节点序号排序
			List<String> lockPaths = zkClient.getChildren(LOCK_ROOT_PATH, false);
			Collections.sort(lockPaths);

			int index = lockPaths.indexOf(lockPath.substring(LOCK_ROOT_PATH.length() + 1));
			if (index == 0) { // lockPath是序号最小的节点,则获取锁
				System.out.println(Thread.currentThread().getName() + " get lock, lockPath: " + lockPath);
				return true;
			} else { // lockPath不是序号最小的节点

				// 创建Watcher,监控lockPath的前一个节点
				Watcher watcher = new Watcher() {
					@Override
					public void process(WatchedEvent event) {
						System.out.println(event.getPath() + " has been deleted");
						synchronized (this) {
							notifyAll();
						}
					}
				};
				String preLockPath = lockPaths.get(index - 1);
				Stat stat = zkClient.exists(LOCK_ROOT_PATH + "/" + preLockPath, watcher);

				if (stat == null) { // 由于某种原因,前一个节点不存在了(比如连接断开),重新tryLock
					return tryLock(lockPath);
				} else { // 阻塞当前进程,直到preLockPath释放锁,重新tryLock
					System.out.println(Thread.currentThread().getName() + " wait for " + preLockPath);
					synchronized (watcher) {
						watcher.wait();
					}
					return tryLock(lockPath);
				}
			}

		}

		/**
		 * 释放锁,即删除lockPath节点
		 */
		private void releaseLock(String lockPath) {
			try {
				zkClient.delete(lockPath, -1);
			} catch (InterruptedException | KeeperException e) {
				e.printStackTrace();
			}
		}

		public void setZkClient(ZooKeeper zkClient) {
			this.zkClient = zkClient;
		}
		
		public void closeZkClient(){
			try {
				zkClient.close();
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}

		public CountPlus(String threadName) {
			super(threadName);
		}
	}

	public static void main(String[] args) throws Exception {

		// 开启五个线程
		CountPlus threadA = new CountPlus("threadA");
		setZkClient(threadA);
		threadA.start();

		CountPlus threadB = new CountPlus("threadB");
		setZkClient(threadB);
		threadB.start();

		CountPlus threadC = new CountPlus("threadC");
		setZkClient(threadC);
		threadC.start();

		CountPlus threadD = new CountPlus("threadD");
		setZkClient(threadD);
		threadD.start();

		CountPlus threadE = new CountPlus("threadE");
		setZkClient(threadE);
		threadE.start();
	}

	public static void setZkClient(CountPlus thread) throws Exception {
		ZooKeeper zkClient = new ZooKeeper("127.0.0.1:2181", 3000, null);
		thread.setZkClient(zkClient);
	}

}

注意:运行程序之前需要创建“/Locks”作为存放锁信息的根节点。

一旦某个Server想要获得锁,就会在/Locks”下创建一个EPHEMERAL_SEQUENTIAL类型的名为“Lock_”子节点,ZooKeeper会自动为每个子节点附加一个递增的编号,该编号为int类型,长度为10,左端以0补全。“/Locks”下会维持着这样一系列的节点:

Lock_0000000001,Lock_0000000002, Lock_0000000003, Lock_0000000004…

一旦这些创建这些节点的Server断开连接,该节点就会被清除(当然也可以主动清除)。

由于节点的编号是递增的,创建越晚排名越靠后。遵循先到先得的原则,Server创建完节点之后会检查自己的节点是不是最小的,如果是,那就获得锁,如果不是,排队等待。执行完任务之后,Server清除自己创建的节点,这样后面的节点会依次获得锁。

程序的运行结果如下:

技术分享


6.3 分布式队列

很多单机上很平常的事情,放在集群环境中都会发生质的变化。

以一个常见的生产者-消费者模型举例:有一个容量有限的邮筒,寄信者(即生产者)不断地将信件塞入邮筒,邮递员(即消费者)不断地从邮筒取出信件发往目的地。运行期间需要保证:

(1)邮筒已达上限时,寄信者停止活动,等带邮筒恢复到非满状态

(2)邮筒已空时,邮递员停止活动,等带邮筒恢复到非空状态

该邮筒用有序队列实现,保证FIFO(先进先出)特性。

在一台机器上,可以用有序队列来实现邮筒,保证FIFO(先进先出)特性,开启两个线程,一个充当寄信者,一个充当邮递员,通过wait()/notify()很容易实现上述功能。

但是,如果在跨进程或者分布式环境下呢?比如,一台机器运行生产者程序,另一台机器运行消费者程序,代表邮筒的有序队列无法跨机器共享,但是两者需要随时了解邮筒的状态(是否已满、是否已空)以及保证信件的有序(先到达的先发送)。

这种情况下,可以借助ZooKeeper实现一个分布式队列。新建一个“/mailBox”节点代表邮筒。一旦有信件到达,就在该节点下创建PERSISTENT_SEQUENTIAL类型的子节点,当子节点总数达到上限时,阻塞生产者,然后使用getChildren(String path, Watcher watcher)方法监控子节点的变化,子节点总数减少后再回复生产;而消费者每次选取序号最小的子节点进行处理,然后删除该节点,当子节点总数为0时,阻塞消费者,同样设置监控,子节点总数增加后再回复消费。

代码如下:

import java.io.IOException;
import java.util.Collections;
import java.util.List;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.data.Stat;

public class ZkDistributedQueue {

	// 邮箱上限为10封信
	private static final int MAILBOX_MAX_SIZE = 10;

	// 邮箱路径
	private static final String MAILBOX_ROOT_PATH = "/mailBox";

	// 信件节点
	private static final String LETTER_NODE_NAME = "letter_";

	// 生产者线程,负责接受信件
	static class Producer extends Thread {

		ZooKeeper zkClient;

		@Override
		public void run() {
			while (true) {
				try {
					if (getLetterNum() == MAILBOX_MAX_SIZE) { // 信箱已满
						System.out.println("mailBox has been full");
						// 创建Watcher,监控子节点的变化
						Watcher watcher = new Watcher() {
							@Override
							public void process(WatchedEvent event) {
								// 生产者已停止,只有消费者在活动,所以只可能出现发送信件的动作
								System.out.println("mailBox has been not full");
								synchronized (this) {
									notify(); // 唤醒生产者
								}
							}
						};
						zkClient.getChildren(MAILBOX_ROOT_PATH, watcher);

						synchronized (watcher) {
							watcher.wait(); // 阻塞生产者
						}
					} else {
						// 线程随机休眠数毫秒,模拟现实中的费时操作
						int sleepMillis = (int) (Math.random() * 1000);
						Thread.sleep(sleepMillis);
						
						// 接收信件,创建新的子节点
						String newLetterPath = zkClient.create(
								MAILBOX_ROOT_PATH + "/" + LETTER_NODE_NAME,
								"letter".getBytes(), 
								Ids.OPEN_ACL_UNSAFE, 
								CreateMode.PERSISTENT_SEQUENTIAL);
						System.out.println("a new letter has been received: " 
								+ newLetterPath.substring(MAILBOX_ROOT_PATH.length()+1) 
								+ ", letter num: " + getLetterNum());
					}
				} catch (Exception e) {
					System.out.println("producer equit task becouse of exception !");
					e.printStackTrace();
					break;
				}
			}
		}

		private int getLetterNum() throws KeeperException, InterruptedException {
			Stat stat = zkClient.exists(MAILBOX_ROOT_PATH, null);
			int letterNum = stat.getNumChildren();
			return letterNum;
		}

		public void setZkClient(ZooKeeper zkClient) {
			this.zkClient = zkClient;
		}
	}

	// 消费者线程,负责发送信件
	static class Consumer extends Thread {

		ZooKeeper zkClient;

		@Override
		public void run() {
			while (true) {
				try {
					if (getLetterNum() == 0) { // 信箱已空
						System.out.println("mailBox has been empty");
						// 创建Watcher,监控子节点的变化
						Watcher watcher = new Watcher() {
							@Override
							public void process(WatchedEvent event) {
								// 消费者已停止,只有生产者在活动,所以只可能出现收取信件的动作
								System.out.println("mailBox has been not empty");
								synchronized (this) {
									notify(); // 唤醒消费者
								}
							}
						};
						zkClient.getChildren(MAILBOX_ROOT_PATH, watcher);

						synchronized (watcher) {
							watcher.wait(); // 阻塞消费者
						}
					} else {
						// 线程随机休眠数毫秒,模拟现实中的费时操作
						int sleepMillis = (int) (Math.random() * 1000);
						Thread.sleep(sleepMillis);

						// 发送信件,删除序号最小的子节点
						String firstLetter = getFirstLetter();
						zkClient.delete(MAILBOX_ROOT_PATH + "/" +firstLetter, -1);
						System.out.println("a letter has been delivered: " + firstLetter 
								+ ", letter num: " + getLetterNum());
					}
				} catch (Exception e) {
					System.out.println("consumer equit task becouse of exception !");
					e.printStackTrace();
					break;
				}
			}
		}

		private int getLetterNum() throws KeeperException, InterruptedException {
			Stat stat = zkClient.exists(MAILBOX_ROOT_PATH, false);
			int letterNum = stat.getNumChildren();
			return letterNum;
		}

		private String getFirstLetter() throws KeeperException, InterruptedException {
			List<String> letterPaths = zkClient.getChildren(MAILBOX_ROOT_PATH, false);
			Collections.sort(letterPaths);
			return letterPaths.get(0);
		}

		public void setZkClient(ZooKeeper zkClient) {
			this.zkClient = zkClient;
		}
	}

	public static void main(String[] args) throws IOException {
		// 开启生产者线程
		Producer producer = new Producer();
		ZooKeeper zkClientA = new ZooKeeper("127.0.0.1:2181", 3000, null);
		producer.setZkClient(zkClientA);
		producer.start();

		// 开启消费者线程
		Consumer consumer = new Consumer();
		ZooKeeper zkClientB = new ZooKeeper("127.0.0.1:2181", 3000, null);
		consumer.setZkClient(zkClientB);
		consumer.start();
	}
}

打印结果如下:

技术分享

上例中还有一个可以改进的地方,在分布式环境下,像MAILBOX_MAX_SIZE这类常量是被多台机器共用的,而且运行期间可能发生改变,比如邮筒上限需要从10改为20,只能停掉机器,然后改动每台机器上的参数,再重新部署。可是,如果该服务不允许停机,而且部署在数十台机器上,让参数在运行时生效且保持一致,怎么办?

这就涉及到了ZooKeeper另一个典型的应用场景——配置中心。被多台机器共享的参数可以托管在ZNode上,对该参数关心的机器在Znode上注册Watcher,一旦该参数发生变化,注册者会收到消息,然后做出相应的调整。

 

ZooKeeper的作用当然不止于此,更多的应用场景就需要使用者在实际项目中发掘跟探索了,毕竟,纸上得来终觉浅,实践出真知。

ZooKeeper之(六)应用实例