首页 > 代码库 > HDU 5976 Detachment
HDU 5976 Detachment
Detachment
Problem Description
In a highly developed alien society, the habitats are almost infinite dimensional space.
In the history of this planet,there is an old puzzle.
You have a line segment with x units’ length representing one dimension.The line segment can be split into a number of small line segments: a1,a2, … (x= a1+a2+…) assigned to different dimensions. And then, the multidimensional space has been established. Now there are two requirements for this space:
1.Two different small line segments cannot be equal ( ai≠aj when i≠j).
2.Make this multidimensional space size s as large as possible (s= a1?a2*...).Note that it allows to keep one dimension.That‘s to say, the number of ai can be only one.
Now can you solve this question and find the maximum size of the space?(For the final number is too large,your answer will be modulo 10^9+7)
In the history of this planet,there is an old puzzle.
You have a line segment with x units’ length representing one dimension.The line segment can be split into a number of small line segments: a1,a2, … (x= a1+a2+…) assigned to different dimensions. And then, the multidimensional space has been established. Now there are two requirements for this space:
1.Two different small line segments cannot be equal ( ai≠aj when i≠j).
2.Make this multidimensional space size s as large as possible (s= a1?a2*...).Note that it allows to keep one dimension.That‘s to say, the number of ai can be only one.
Now can you solve this question and find the maximum size of the space?(For the final number is too large,your answer will be modulo 10^9+7)
Input
The first line is an integer T,meaning the number of test cases.
Then T lines follow. Each line contains one integer x.
1≤T≤10^6, 1≤x≤10^9
Then T lines follow. Each line contains one integer x.
1≤T≤10^6, 1≤x≤10^9
Output
Maximum s you can get modulo 10^9+7. Note that we wants to be greatest product before modulo 10^9+7.
Sample Input
1
4
Sample Output
4
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long LL; const int MAXN=1e5+5; const LL MOD=1e9+7; int has[MAXN],sum[MAXN],inv[MAXN],tot; LL pro[MAXN]; int get_inv(int x) { if(x==1)return 1; return (MOD-MOD/x)*get_inv(MOD%x)%MOD; } void table() { has[2]=5; tot=2; while(has[tot]<=1e9) { tot++; has[tot]=has[tot-1]+tot+1; } sum[1]=2; for(int i=2;sum[i-1]<=1e9;i++) sum[i]=sum[i-1]+i+1; inv[1]=pro[1]=1; for(int i=2;i<MAXN;i++) (pro[i]=pro[i-1]*i)%=MOD,inv[i]=get_inv(pro[i]); for(int i=2;i<MAXN;i++) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD; } void solve(int x) { int num=upper_bound(has+2,has+tot,x)-has-1; int more=x-sum[num]; int l,r; l=2+more/num; r=l+num-1; LL res; if(more%num) res=pro[r+1]*inv[l-1]%MOD*inv[r+1-more%num]%MOD; else res=pro[r]*inv[l-1]%MOD; printf("%lld\n",res); } int main() { table(); int T; scanf("%d",&T); while(T--) { int x; scanf("%d",&x); if(x==1||x==2||x==3||x==4) { printf("%d\n",x); continue; } solve(x); } return 0; }
HDU 5976 Detachment
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。