首页 > 代码库 > Spark SQL源码分析之核心流程
Spark SQL源码分析之核心流程
1、整合:将SQL类型的查询语言整合到 Spark 的核心RDD概念里。这样可以应用于多种任务,流处理,批处理,包括机器学习里都可以引入Sql。
2、效率:因为Shark受到hive的编程模型限制,无法再继续优化来适应Spark模型里。
前一段时间测试过Shark,并且对Spark SQL也进行了一些测试,但是还是忍不住对Spark SQL一探究竟,就从源代码的角度来看一下Spark SQL的核心执行流程吧。
一、引子
先来看一段简单的Spark SQL程序:1. val sqlContext = new org.apache.spark.sql.SQLContext(sc) 2. import sqlContext._ 3.case class Person(name: String, age: Int) 4.val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)) 5.people.registerAsTable("people") 6.val teenagers = sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") 7.teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
程序前两句1和2生成SQLContext,导入sqlContext下面的all,也就是运行SparkSQL的上下文环境。
程序3,4两句是加载数据源注册table
第6句是真正的入口,是sql函数,传入一句sql,先会返回一个SchemaRDD。这一步是lazy的,直到第七句的collect这个action执行时,sql才会执行。
二、SQLCOntext
SQLContext是执行SQL的上下文对象,首先来看一下它Hold的有哪些成员:Catalog
一个存储<tableName,logicalPlan>的map结构,查找关系的目录,注册表,注销表,查询表和逻辑计划关系的类。
SqlParser
Parse 传入的sql来对语法分词,构建语法树,返回一个logical plan
Analyzer
logical plan的语法分析器
Optimizer
logical Plan的优化器
LogicalPlan
逻辑计划,由catalyst的TreeNode组成,可以看到有3种语法树
SparkPlanner
包含不同策略的优化策略来优化物理执行计划
QueryExecution
sql执行的环境上下文
就是这些对象组成了Spark SQL的运行时,看起来很酷,有静态的metadata存储,有分析器、优化器、逻辑计划、物理计划、执行运行时。
那这些对象是怎么相互协作来执行sql语句的呢?
三、Spark SQL执行流程
话不多说,先上图,这个图我用一个在线作图工具process on话的,画的不好,图能达意就行:
核心组件都是绿色的方框,每一步流程的结果都是蓝色的框框,调用的方法是橙色的框框。
先概括一下,大致的执行流程是:
Parse SQL -> Analyze Logical Plan -> Optimize Logical Plan -> Generate Physical Plan -> Prepare Spark Plan -> Executre SQL -> Generate RDD
更具体的执行流程:
sql or hql -> sql parser(parse)生成 unresolved logical plan -> analyzer(analysis)生成analyzed logical plan -> optimizer(optimize)optimized logical plan -> spark planner(use stretage to plan)生成physical plan -> call next函数生成spark plan -> spark plan(prepare) prepared spark plan -> call toRDD 执行sql生成RDD
3.1、Parse SQL
回到开始的程序,我们调用sql函数,其实是SQLContext里的sql函数它的实现是new一个SchemaRDD,在生成的时候就调用parseSql方法了。/** * Executes a SQL query using Spark, returning the result as a SchemaRDD. * * @group userf */ def sql(sqlText: String): SchemaRDD = new SchemaRDD(this, parseSql(sqlText))结果是会生成一个逻辑计划
@transient protected[sql] val parser = new catalyst.SqlParser protected[sql] def parseSql(sql: String): LogicalPlan = parser(sql)
3.2、Analyze to Execution
当我们调用SchemaRDD里面的collect方法时,则会初始化QueryExecution,开始启动执行。override def collect(): Array[Row] = queryExecution.executedPlan.executeCollect()我们可以很清晰的看到执行步骤:
protected abstract class QueryExecution { def logical: LogicalPlan lazy val analyzed = analyzer(logical) //首先分析器会分析逻辑计划 lazy val optimizedPlan = optimizer(analyzed) //随后优化器去优化分析后的逻辑计划 // TODO: Don't just pick the first one... lazy val sparkPlan = planner(optimizedPlan).next() //根据策略生成plan物理计划 // executedPlan should not be used to initialize any SparkPlan. It should be // only used for execution. lazy val executedPlan: SparkPlan = prepareForExecution(sparkPlan) //最后生成已经准备好的Spark Plan /** Internal version of the RDD. Avoids copies and has no schema */ lazy val toRdd: RDD[Row] = executedPlan.execute() //最后调用toRDD方法执行任务将结果转换为RDD protected def stringOrError[A](f: => A): String = try f.toString catch { case e: Throwable => e.toString } def simpleString: String = stringOrError(executedPlan) override def toString: String = s"""== Logical Plan == |${stringOrError(analyzed)} |== Optimized Logical Plan == |${stringOrError(optimizedPlan)} |== Physical Plan == |${stringOrError(executedPlan)} """.stripMargin.trim }
至此整个流程结束。
四、总结:
通过分析SQLContext我们知道了Spark SQL都包含了哪些组件,SqlParser,Parser,Analyzer,Optimizer,LogicalPlan,SparkPlanner(包含Physical Plan),QueryExecution.通过调试代码,知道了Spark SQL的执行流程:
sql or hql -> sql parser(parse)生成 unresolved logical plan -> analyzer(analysis)生成analyzed logical plan -> optimizer(optimize)optimized logical plan -> spark planner(use stretage to plan)生成physical plan -> call next函数 生成spark plan -> spark plan(prepare) prepared spark plan -> call toRDD 执行sql生成RDD
随后还会对里面的每个组件对象进行研究,看看catalyst究竟做了哪些优化。
——EOF——
原创文章:转载请注明出自:http://blog.csdn.net/oopsoom/article/details/37658021