首页 > 代码库 > Apache Spark源码走读之19 -- standalone cluster模式下资源的申请与释放
Apache Spark源码走读之19 -- standalone cluster模式下资源的申请与释放
欢迎转载,转载请注明出处,徽沪一郎。
概要
本文主要讲述在standalone cluster部署模式下,Spark Application在整个运行期间,资源(主要是cpu core和内存)的申请与释放。
构成Standalone cluster部署模式的四大组成部件如下图所示,分别为Master, worker, executor和driver,它们各自运行于独立的JVM进程。
从资源管理的角度来说
- Master 掌管整个cluster的资源,主要是指cpu core和memory,但Master自身并不拥有这些资源
- Worker 计算资源的实际贡献者,须向Master汇报自身拥有多少cpu core和memory, 在master的指示下负责启动executor
- Executor 执行真正计算的苦力,由master来决定该进程拥有的core和memory数值
- Driver 资源的实际占用者,Driver会提交一到多个job,每个job在拆分成多个task之后,会分发到各个executor真正的执行
这些内容在standalone cluster模式下的容错性分析中也有所涉及,今天主要讲一下资源在分配之后不同场景下是如何被顺利回收的。
资源上报汇聚过程
standalone cluster下最主要的当然是master,master必须先于worker和driver程序正常启动。
当master顺利启动完毕,可以开始worker的启动工作,worker在启动的时候需要向master发起注册,在注册消息中带有本worker节点的cpu core和内存。
调用顺序如下preStart->registerWithMaster->tryRegisterAllMasters
看一看tryRegisterAllMasters的代码
def tryRegisterAllMasters() { for (masterUrl <- masterUrls) { logInfo("Connecting to master " + masterUrl + "...") val actor = context.actorSelection(Master.toAkkaUrl(masterUrl)) actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress) } }
我们的疑问是RegisterWorker构造函数所需的参数memory和cores是从哪里获取的呢?
注意一下Worker中的main函数会创建WorkerArguments,
def main(argStrings: Array[String]) { SignalLogger.register(log) val args = new WorkerArguments(argStrings) val (actorSystem, _) = startSystemAndActor(args.host, args.port, args.webUiPort, args.cores, args.memory, args.masters, args.workDir) actorSystem.awaitTermination() }
memory通过函数inferDefaultMemory获取,而cores通过inferDefaultCores获取。
def inferDefaultCores(): Int = { Runtime.getRuntime.availableProcessors() } def inferDefaultMemory(): Int = { val ibmVendor = System.getProperty("java.vendor").contains("IBM") var totalMb = 0 try { val bean = ManagementFactory.getOperatingSystemMXBean() if (ibmVendor) { val beanClass = Class.forName("com.ibm.lang.management.OperatingSystemMXBean") val method = beanClass.getDeclaredMethod("getTotalPhysicalMemory") totalMb = (method.invoke(bean).asInstanceOf[Long] / 1024 / 1024).toInt } else { val beanClass = Class.forName("com.sun.management.OperatingSystemMXBean") val method = beanClass.getDeclaredMethod("getTotalPhysicalMemorySize") totalMb = (method.invoke(bean).asInstanceOf[Long] / 1024 / 1024).toInt } } catch { case e: Exception => { totalMb = 2*1024 System.out.println("Failed to get total physical memory. Using " + totalMb + " MB") } } // Leave out 1 GB for the operating system, but don‘t return a negative memory size math.max(totalMb - 1024, 512) }
如果已经在配置文件中为显示指定了每个worker的core和memory,则使用配置文件中的值,具体配置参数为SPARK_WORKER_CORES和SPARK_WORKER_MEMORY
Master在收到RegisterWork消息之后,根据上报的信息为每一个worker创建相应的WorkerInfo.
case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) => { logInfo("Registering worker %s:%d with %d cores, %s RAM".format( workerHost, workerPort, cores, Utils.megabytesToString(memory))) if (state == RecoveryState.STANDBY) { // ignore, don‘t send response } else if (idToWorker.contains(id)) { sender ! RegisterWorkerFailed("Duplicate worker ID") } else { val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory, sender, workerUiPort, publicAddress) if (registerWorker(worker)) { persistenceEngine.addWorker(worker) sender ! RegisteredWorker(masterUrl, masterWebUiUrl) schedule() } else { val workerAddress = worker.actor.path.address logWarning("Worker registration failed. Attempted to re-register worker at same " + "address: " + workerAddress) sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: " + workerAddress) } }
资源分配过程
如果在worker注册上来的时候,已经有Driver Application注册上来,那么就需要将原先处于未分配资源状态的driver application启动相应的executor。
WorkerInfo在schedule函数中会被使用到,schedule函数处理逻辑概述如下
- 查看目前存活的worker中剩余的内存是否能够满足application每个task的最低需求,如果是则将该worker加入到可分配资源的队列
- 根据分发策略,如果是决定将工作平摊到每个worker,则每次在一个worker上占用一个core,直到所有可分配资源耗尽或已经满足driver的需求
- 如果分发策略是分发到尽可能少的worker,则一次占用尽worker上的可分配core,直到driver的core需求得到满足
- 根据步骤2或3的结果在每个worker上添加相应的executor,处理函数是addExecutor
为了叙述简单,现仅列出平摊到各个worker的分配处理过程
for (worker > workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) { for (app <- waitingApps if app.coresLeft > 0) { if (canUse(app, worker)) { val coresToUse = math.min(worker.coresFree, app.coresLeft) if (coresToUse > 0) { val exec = app.addExecutor(worker, coresToUse) launchExecutor(worker, exec) app.state = ApplicationState.RUNNING } } } }
launchExecutor主要负责两件事情
- 记录下新添加的executor使用掉的cpu core和内存数目,记录过程发生在worker.addExecutor
- 向worker发送LaunchExecutor指令
def launchExecutor(worker: WorkerInfo, exec: ExecutorInfo) { logInfo("Launching executor " + exec.fullId + " on worker " + worker.id) worker.addExecutor(exec) worker.actor ! LaunchExecutor(masterUrl, exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory) exec.application.driver ! ExecutorAdded( exec.id, worker.id, worker.hostPort, exec.cores, exec.memory) }
worker在收到LaunchExecutor指令后,也会记一笔账,将要使用掉的cpu core和memory从可用资源中减去,然后使用ExecutorRunner来负责生成Executor进程,注意Executor运行于独立的进程。代码如下
case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) => if (masterUrl != activeMasterUrl) { logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.") } else { try { logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name)) val manager = new ExecutorRunner(appId, execId, appDesc, cores_, memory_, self, workerId, host, appDesc.sparkHome.map(userSparkHome => new File(userSparkHome)).getOrElse(sparkHome), workDir, akkaUrl, conf, ExecutorState.RUNNING) executors(appId + "/" + execId) = manager manager.start() coresUsed += cores_ memoryUsed += memory_ masterLock.synchronized { master ! ExecutorStateChanged(appId, execId, manager.state, None, None) } } catch { case e: Exception => { logError("Failed to launch executor %s/%d for %s".format(appId, execId, appDesc.name)) if (executors.contains(appId + "/" + execId)) { executors(appId + "/" + execId).kill() executors -= appId + "/" + execId } masterLock.synchronized { master ! ExecutorStateChanged(appId, execId, ExecutorState.FAILED, None, None) } } } }
在资源分配过程中需要注意到的是如果有多个Driver Application处于等待状态,资源分配的原则是FIFO,先到先得。
资源回收过程
worker中上报的资源最终被driver application中提交的job task所占用,如果application结束(包括正常和异常退出),application所占用的资源就应该被顺利回收,即将占用的资源重新归入可分配资源行列。
现在的问题转换成Master和Executor如何知道Driver Application已经退出了呢?
有两种不同的处理方式,一种是先道别后离开,一种是不告而别。现分别阐述。
何为先道别后离开,即driver application显式的通知master和executor,任务已经完成了,我要bye了。应用程序显式的调用SparkContext.stop
def stop() { postApplicationEnd() ui.stop() // Do this only if not stopped already - best case effort. // prevent NPE if stopped more than once. val dagSchedulerCopy = dagScheduler dagScheduler = null if (dagSchedulerCopy != null) { metadataCleaner.cancel() cleaner.foreach(_.stop()) dagSchedulerCopy.stop() taskScheduler = null // TODO: Cache.stop()? env.stop() SparkEnv.set(null) ShuffleMapTask.clearCache() ResultTask.clearCache() listenerBus.stop() eventLogger.foreach(_.stop()) logInfo("Successfully stopped SparkContext") } else { logInfo("SparkContext already stopped") } }
显式调用SparkContext.stop的一个主要功能是会去显式的停止Executor,具体下达StopExecutor指令的代码见于CoarseGrainedSchedulerBackend中的stop函数
override def stop() { stopExecutors() try { if (driverActor != null) { val future = driverActor.ask(StopDriver)(timeout) Await.ready(future, timeout) } } catch { case e: Exception => throw new SparkException("Error stopping standalone scheduler‘s driver actor", e) } }
那么Master又是如何知道Driver Application退出的呢?这要归功于Akka的通讯机制了,当相互通讯的任意一方异常退出,另一方都会收到DisassociatedEvent, Master也就是在这个消息处理中移除已经停止的Driver Application。
case DisassociatedEvent(_, address, _) => { // The disconnected client could‘ve been either a worker or an app; remove whichever it was logInfo(s"$address got disassociated, removing it.") addressToWorker.get(address).foreach(removeWorker) addressToApp.get(address).foreach(finishApplication) if (state == RecoveryState.RECOVERING && canCompleteRecovery) { completeRecovery() } }
不告而别的方式下Executor是如何知道自己所服务的application已经顺利完成使命了呢?道理和master的一样,还是通过DisassociatedEvent来感知。详见CoarseGrainedExecutorBackend中的receive函数
case x: DisassociatedEvent => logError(s"Driver $x disassociated! Shutting down.") System.exit(1)
异常情况下的资源回收
由于Master和Worker之间的心跳机制,如果worker异常退出, Master会由心跳机制感知到其消亡,进而将其上报的资源移除。
Executor异常退出时,Worker中的监控线程ExecutorRunner会立即感知,进而上报给Master,Master会回收资源,并重新要求worker启动executor。