首页 > 代码库 > Go Deeper(2010成都现场赛题)(2-sat)

Go Deeper(2010成都现场赛题)(2-sat)

G - Go Deeper
Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

Here is a procedure‘s pseudocode:

 
	   go(int dep, int n, int m)  	   begin  	      output the value of dep. 	      if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)	   end 	 

 

In this code n is an integer. abc and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array ab and c are mwhile the length of array x is n.

Given the elements of array ab, and c, when we call the procedure go(0, n , m) what is the maximal possible value does the procedure output?

Input

There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1bi-1 < n, 0 ≤ ci-1 ≤ 2).

Output

For each test case, output the result in a single line.

Sample Input

 

32 10 1 02 10 0 02 20 1 01 1 2

 

Sample Output

 

112

题目大意:
 
给定一些方程,x[]数组未知,求前面最多能够有多少方程x[a]+x[b]!=c能够被满足。
 其中 c=0,1,2
  x[]={0,1}
相当于裸的2sat问题,加上二分
  
  强烈建议阅读 kuangbin大神对2-sat的总结:http://www.cnblogs.com/kuangbin/archive/2012/10/05/2712429.html

总的来说,就是当 a or b 时 连接 a‘ -> b 与 b‘ -> a 的边,然后进行强连通判断是否出现 a 与 a‘ ...在同一个连通分量中,若在则不可能。

建立数a的两个状态,即a与a‘,相当于x[a]=1 和 x[a‘]=0

x[a]+x[b]!=0 => a or b => a‘->b 且 a->b‘
x[a]+x[b]!=1 => (a and b) or (a‘ and b‘) == a or b‘ 且 a‘ or b => a‘->b‘ 且 b->a 且 a->b 且 b‘->a
x[a]+x[b]!=2 => a‘ or b‘ => a->b‘ 且 a‘->b

按上面来建图判断即可

#include<cstdio>#include<cstring>int e[50000],pd[50000],be[800],ne[50000],all;int dfn[800],low[800],instack[800],belong[800],stack[800],stak,curr,num;int a,b,c,n,m,l,r,mid,flag;void add(int x,int y,int p){    e[++all]=y;    pd[all]=p;    ne[all]=be[x];    be[x]=all;}void tarjan(int x){    instack[x]=1;    stack[++stak]=x;    dfn[x]=low[x]=++curr;    for(int j=be[x];j!=0;j=ne[j])    if(pd[j]<=mid){        if(!dfn[e[j]]){            tarjan(e[j]);            if(low[x]>low[e[j]]) low[x]=low[e[j]];        }else if(instack[e[j]]&&low[x]>low[e[j]])            low[x]=low[e[j]];    }    if(dfn[x]==low[x]){        int j;        ++num;        do{            j=stack[stak--];            instack[j]=0;            belong[j]=num;        }while(j!=x);    }}int solve(){    curr=stak=num=0;    memset(dfn,0,sizeof(dfn));    memset(low,0,sizeof(low));    memset(instack,0,sizeof(instack));    for(int i=0;i<2*n;i++)        if(!dfn[i]) tarjan(i);    flag=0;    for(int i=0;i<n;i++)        if(belong[2*i]==belong[2*i+1]){            flag=1;            break;        }    return flag;}int main(){    int tt;    scanf("%d",&tt);    while(tt--){        scanf("%d%d",&n,&m);        all=0;        memset(e,0,sizeof(e));        memset(be,0,sizeof(be));        memset(ne,0,sizeof(ne));        memset(pd,0,sizeof(pd));        for(int i=0;i<m;i++){            scanf("%d%d%d",&a,&b,&c);            switch (c){            case 0: add(2*a+1,2*b,i);                    add(2*b+1,2*a,i);                    break;            case 1: add(2*a,2*b,i);                    add(2*b+1,2*a+1,i);                    add(2*b,2*a,i);                    add(2*a+1,2*b+1,i);                    break;            case 2: add(2*a,2*b+1,i);                    add(2*b,2*a+1,i);                    break;            }        }        l=0;r=m-1;        while(l<r-1){            mid=(l+r)/2;            if(solve()) r=mid; else l=mid;        }        mid=r;        if(!solve()) printf("%d\n",r+1);        else printf("%d\n",l+1);    }    return 0;}
View Code