首页 > 代码库 > poj 3468【线段树】

poj 3468【线段树】

题意:给定Q(1<=Q<=100000)个数A1,A2…AQ,以及可能多次进行的两个操作

1)对某个区间Ai……Aj的每个数都加n(n可变)

2)对某个区间Ai……Aj的数求和

分析:

树结点只存和,会导致每次加数时都要更新到叶子节点,速度太慢(O(nlog(n))),这是必须避免的

1.在增加时,如果要加的区间正好覆盖一个节点,则增加其节点的Inc值,不再往下走,否则要更新nSum(加上本次增量)

再将增量往下传。这样更新的复杂度就是O(log(n))

2.在查询时,如果待查区间不是正好覆盖一个节点,就将节点的Inc往下带,然后将Inc代表的所有增量累加到nSum上后将

Inc清0,接下来再往下查询。Inc往下带的过程也是区间分解过程,复杂度也是O(log(n))

#include<algorithm>  #include<cstdio>#include<vector>#include<string>  #include<string.h>  #include<iostream>using namespace std;typedef long long LL;const int INF = 0x7FFFFFFF;const int maxn = 1e3 + 10;struct CNode{	int L, R;	CNode *pLeft, *pRight;	long long nSum;//原来的和	long long Inc;//增量c的累加};CNode Tree[200010];//2倍叶子节点数目就够int nCount = 0;int Mid(CNode*pRoot){	return (pRoot->L + pRoot->R) / 2;}void BuildTree(CNode *pRoot, int L, int R){	pRoot->L = L;	pRoot->R = R;	pRoot->nSum = 0;	pRoot->Inc = 0;	if (L == R)		return;	nCount++;	pRoot->pLeft = Tree + nCount;	nCount++;	pRoot->pRight = Tree + nCount;	BuildTree(pRoot->pLeft, L, (L + R) / 2);	BuildTree(pRoot->pRight, (L + R) / 2 + 1, R);}void Insert(CNode *pRoot, int i, int v){	if (pRoot->L == i&&pRoot->R == i)	{		pRoot->nSum = v;		return;	}	pRoot->nSum += v;//累加和	if (i <= Mid(pRoot))		Insert(pRoot->pLeft, i, v);	else		Insert(pRoot->pRight, i, v);	}void Add(CNode * pRoot, int a, int b, long long c){	if (pRoot->L == a&&pRoot->R == b)	{		pRoot->Inc += c;		return;	}	pRoot->nSum += c*(b - a + 1);	if (b <= (pRoot->L + pRoot->R) / 2)		Add(pRoot->pLeft, a, b, c);	else if (a >= (pRoot->L + pRoot->R) / 2 + 1)		Add(pRoot->pRight, a, b, c);	else	{		Add(pRoot->pLeft, a, (pRoot->L + pRoot->R) / 2, c);		Add(pRoot->pRight, (pRoot->L + pRoot->R) / 2 + 1, b, c);	}	}long long QuerynSum(CNode * pRoot, int a, int b){	if (pRoot->L == a&&pRoot->R == b)		return pRoot->nSum + (pRoot->R - pRoot->L + 1)*pRoot->Inc;	pRoot->nSum += (pRoot->R - pRoot->L + 1)*pRoot->Inc;	Add(pRoot->pLeft, pRoot->L, Mid(pRoot), pRoot->Inc);	Add(pRoot->pRight, Mid(pRoot) + 1, pRoot->R, pRoot->Inc);	pRoot->Inc = 0;	if (b <= Mid(pRoot))		return QuerynSum(pRoot->pLeft, a, b);	else if (a >= Mid(pRoot) + 1)		return QuerynSum(pRoot->pRight, a, b);	else	{		return QuerynSum(pRoot->pLeft, a, Mid(pRoot)) +                QuerynSum(pRoot->pRight, Mid(pRoot) + 1, b);  	}}int main(){	int n, q, a, b, c;	char cmd[10];	scanf("%d%d", &n, &q);	int i, j, k;	nCount = 0;	BuildTree(Tree, 1, n);	for (i = 1; i <= n;i++)	{		scanf("%d", &a);		Insert(Tree, i, a);	}	for (i = 0; i < q; i++)	{		scanf("%s", cmd);		if (cmd[0]==‘C‘)		{			scanf("%d%d%d", &a, &b, &c);			Add(Tree, a, b, c);		}		else		{			scanf("%d%d", &a, &b);			printf("%I64d\n", QuerynSum(Tree, a, b));		}	}	return 0;}

poj 3468【线段树】