首页 > 代码库 > [OpenCV] Samples 05: convexhull
[OpenCV] Samples 05: convexhull
得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull,输入参数就可以是contours组中的一个轮廓,返回外凸包络的点集 ---- 如此就能去掉凹进去的边。
对于凸包算法,其中最有名的莫过于Graham扫描算法,它的复杂度为nlog(n)
参考:计算几何之凸包(Algorithm show), 寻找轮廓
高级:Snake模型在轮廓提取中的应用 cvSnakeImage()
#include "opencv2/imgproc/imgproc.hpp"#include "opencv2/highgui/highgui.hpp"#include <fstream>#include <iostream>using namespace cv;using namespace std;static void help(){ cout << "\nThis sample program demonstrates the use of the convexHull() function\n" << "Call:\n" << "./convexhull\n" << endl;}int main( int argc, char** argv ){ CommandLineParser parser(argc, argv, "{help h||}"); if (parser.has("help")) { help(); return 0; } Mat img(500, 500, CV_8UC3); RNG& rng = theRNG(); for(;;) { char key; int i, count = (unsigned)rng%100 + 1; vector<Point> points; for( i = 0; i < count; i++ ) { Point pt; pt.x = rng.uniform(img.cols/4, img.cols*3/4); pt.y = rng.uniform(img.rows/4, img.rows*3/4); points.push_back(pt); } // Jeff --> hull is the indice of corner points vector<int> hull; convexHull(Mat(points), hull, true);/******************************************************************************/ // Jeff --> draw the effect. img = Scalar::all(0); for( i = 0; i < count; i++ ) circle(img, points[i], 3, Scalar(0, 0, 255), FILLED, LINE_AA); int hullcount = (int)hull.size(); cout << hullcount << endl; Point pt0 = points[hull[hullcount-1]]; for( i = 0; i < hullcount; i++ ) { // Jeff --> extract corners. Point pt = points[hull[i]]; line(img, pt0, pt, Scalar(0, 255, 0), 1,LINE_AA); pt0 = pt; } imshow("hull", img); key = (char)waitKey(); if( key == 27 || key == ‘q‘ || key == ‘Q‘ ) // ‘ESC‘ break; } return 0;}
轮廓的进一步描述
进一步参见:OpenCV成长之路:直线、轮廓的提取与描述
[OpenCV] Samples 05: convexhull
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。